自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

虚幻社区

xuhss.com 路径制的在线新IT大学。

  • 博客(822)
  • 资源 (14)
  • 论坛 (1)
  • 收藏
  • 关注

原创 大学四年到毕业工作5年的学习路线资源汇总

前言一直有伙伴问小傅哥,有没有一个Java的学习路线,最好再有一些相关的资料、书籍、视频。因为现在自己学习也不知道哪不会,看到这个学这个,看到那个学那个,也摸不到头,还比较混乱。特别希望有一个大学到毕业的学习路线整理。好!安排给你。以下是我对大学四年和工作5年左右的一个学习路线整理,并将所有资料按照大一、大二…到工作五年,分别汇总到网盘里,以便不至于将资料弄到一堆,根本没法看。因为分享链接总是失效,可以通过关注博客:虚幻私塾,获取加入链接,下载有序分类的300G资料。大一对于刚上大学的小伙伴来说,

2020-11-24 08:26:35 694 6

原创 Matplotlib 3D 数据

3D 图首先在进行 3D Plot 时除了导入 matplotlib ,还要额外添加一个模块,即 Axes 3D 3D 坐标轴显示:import numpy as npimport matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3D之后要先定义一个图像窗口,在窗口上添加3D坐标轴,显示成下图:fig = plt.figure()ax = Axes3D(fig)接下来给进 X 和 Y 值,并将 X 和 Y 编织成

2021-01-24 21:15:38 12

原创 Matplotlib Image 图片

转载请注明:虚幻私塾 » Matplotlib Image 图片随机矩阵画图这一节我们讲解怎样在matplotlib中打印出图像。这里我们打印出的是纯粹的数字,而非自然图像。 我们今天用这样 3x3 的 2D-array 来表示点的颜色,每一个点就是一个pixel。import matplotlib.pyplot as pltimport numpy as npa = np.array([0.313660827978, 0.365348418405, 0.423733120134,

2021-01-24 20:24:44 13

原创 Matplotlib contours 等高线图

本节讲解如何用matplotlib生成等高线图。今天的结果如下图所示:画等高线数据集即三维点 (x,y) 和对应的高度值,共有256个点。高度值使用一个 height function f(x,y) 生成。 x, y 分别是在区间 [-3,3] 中均匀分布的256个值,并用meshgrid在二维平面中将每一个x和每一个y分别对应起来,编织成栅格:import matplotlib.pyplot as pltimport numpy as npdef f(x,y): # the heig

2021-01-24 19:42:42 13

原创 Matplotlib bar 柱状图

转载请注明:虚幻私塾 » Matplotlib bar 柱状图本节我们介绍一下用matplotib来制作一个柱状图,今天的结果如下图:今天的柱状图分成上下两部分,每一个柱体上都有相应的数值标注,并且取消坐标轴的显示。生成基本图形向上向下分别生成12个数据,X为 0 到 11 的整数 ,Y是相应的均匀分布的随机数据。 使用的函数是plt.bar,参数为X和Y:import matplotlib.pyplot as pltimport numpy as npn = 12X = np.aran

2021-01-24 07:48:17 54

原创 Matplotlib scatter 散点图

本节我们将讲述各种不同的plot的方式。之前我们讲到了如何plot线,今天我们讲述如何plot散点图。 今天用到的例子最终呈现的结果如下图:散点图首先,先引入matplotlib.pyplot简写作plt,再引入模块numpy用来产生一些随机数据。生成1024个呈标准正态分布的二维数据组 (平均数是0,方差为1) 作为一个数据集,并图像化这个数据集。每一个点的颜色值用T来表示:import matplotlib.pyplot as pltimport numpy as npn = 1024

2021-01-24 07:22:24 40

原创 matplotlib tick能见度

生成图形当图片中的内容较多,相互遮盖时,我们可以通过设置相关内容的透明度来使图片更易于观察,也即是通过本节中的bbox参数设置来调节图像信息.首先参考之前的例子, 我们先绘制图像基本信息:import matplotlib.pyplot as pltimport numpy as npx = np.linspace(-3, 3, 50)y = 0.1*xplt.figure()# 在 plt 2.0.2 或更高的版本中, 设置 zorder 给 plot 在 z 轴方向排序plt.pl

2021-01-23 21:01:11 47

原创 matplotlib Annotation 标注

画出基本图当图线中某些特殊地方需要标注时,我们可以使用 annotation. matplotlib 中的 annotation 有两种方法, 一种是用 plt 里面的 annotate,一种是直接用 plt 里面的 text 来写标注.首先,我们在坐标轴中绘制一条直线.import matplotlib.pyplot as pltimport numpy as npx = np.linspace(-3, 3, 50)y = 2*x + 1plt.figure(num=1, figsize

2021-01-23 16:39:52 50

原创 Matplotlib Legend 图例

添加图例matplotlib 中的 legend 图例就是为了帮我们展示出每个数据对应的图像名称. 更好的让读者认识到你的数据结构.上次课我们了解到关于坐标轴设置方面的一些内容,代码如下:import matplotlib.pyplot as pltimport numpy as npx = np.linspace(-3, 3, 50)y1 = 2*x + 1y2 = x**2plt.figure()#set x limitsplt.xlim((-1, 2))plt.ylim((-

2021-01-23 15:46:15 64

原创 matplotlib 设置坐标轴2

转载请注明:虚幻私塾 » matplotlib 设置坐标轴2这次会说到在我们如何移动matplotlib 中 axis 坐标轴的位置.设置不同名字和位置使用import导入模块matplotlib.pyplot,并简写成plt 使用import导入模块numpy,并简写成npimport matplotlib.pyplot as pltimport numpy as np使用np.linspace定义x:范围是(-3,3);个数是50. 仿真一维数据组(x ,y1)表示曲线1. 仿真一维数据组

2021-01-23 10:16:44 55

原创 matplotlib 设置坐标轴1

转载请注明:虚幻私塾 » matplotlib 设置坐标轴1在 matplotlib 中如何设置坐标轴的范围, 单位长度, 替代文字等等.调整名字和间隔使用import导入模块matplotlib.pyplot,并简写成plt 使用import导入模块numpy,并简写成npimport matplotlib.pyplot as pltimport numpy as np使用np.linspace定义x:范围是(-3,3);个数是50. 仿真一维数据组(x ,y1)表示曲线1. 仿真一维数据组

2021-01-23 09:26:49 62

原创 matplotlib figure 图像

转载请注明:虚幻私塾 » matplotlib figure 图像简单的线条matplotlib 的 figure 就是一个 单独的 figure 小窗口, 小窗口里面还可以有更多的小图片.使用import导入模块matplotlib.pyplot,并简写成plt 使用import导入模块numpy,并简写成npimport matplotlib.pyplot as pltimport numpy as np使用np.linspace定义x:范围是(-3,3);个数是50. 仿真一维数据组(x

2021-01-23 07:13:01 56

原创 matplotlib 基本用法

基础应用使用import导入模块matplotlib.pyplot,并简写成plt 使用import导入模块numpy,并简写成npimport matplotlib.pyplot as pltimport numpy as np使用np.linspace定义x:范围是(-1,1);个数是50. 仿真一维数据组(x ,y)表示曲线1.x = np.linspace(-1, 1, 50)y = 2*x + 1使用plt.figure定义一个图像窗口. 使用plt.plot画(x ,y)曲线.

2021-01-23 06:27:19 55

原创 为什么要用Matplotlib

如果某天你发现自己要学习 Matplotlib, 很可能是因为:Matplotlib 是一个非常强大的 Python 画图工具;手中有很多数据, 可是不知道该怎么呈现这些数据.所以就找到了 Matplotlib. 它能帮你画出美丽的:线图;散点图;等高线图;条形图;柱状图;3D 图形,甚至是图形动画等等.下面是一些例图:...

2021-01-22 21:08:58 50

原创 Pandas plot 出图

这次我们讲如何将数据可视化. 首先import我们需要用到的模块,除了 pandas,我们也需要使用 numpy 生成一些数据,这节里使用的 matplotlib 仅仅是用来 show 图片的, 即 plt.show()。import pandas as pdimport numpy as npimport matplotlib.pyplot as plt今天我们主要是学习如何 plot data创建一个Series这是一个线性的数据,我们随机生成1000个数据,Series 默认的 inde

2021-01-22 07:07:52 107

原创 Pandas 合并 merge

转载请注明:虚幻私塾 » Pandas 合并 merge要点pandas中的merge和concat类似,但主要是用于两组有key column的数据,统一索引的数据. 通常也被用在Database的处理当中.依据一组key合并import pandas as pd#定义资料集并打印出left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'], 'A': ['A0', 'A1', 'A2',

2021-01-22 06:00:13 129

原创 Pandas 合并 concat

要点pandas处理多组数据的时候往往会要用到数据的合并处理,使用 concat是一种基本的合并方式.而且concat中有很多参数可以调整,合并成你想要的数据形式.axis (合并方向)axis=0是预设值,因此未设定任何参数时,函数默认axis=0。import pandas as pdimport numpy as np#定义资料集df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'])df2 = pd.DataFr

2021-01-17 23:11:54 174

原创 Pandas 导入导出

转载请注明:虚幻私塾 » Pandas 导入导出要点pandas可以读取与存取的资料格式有很多种,像csv、excel、json、html与pickle等…, 详细请看官方说明文件读取csv示范档案下载 - student.csvimport pandas as pd #加载模块#读取csvdata = pd.read_csv('student.csv')#打印出dataprint(data)将资料存取成pickledata.to_pickle('student.pickle')

2021-01-17 19:03:26 173

原创 Pandas 处理丢失数据

转载请注明:虚幻私塾 » Pandas 处理丢失数据创建含 NaN 的矩阵有时候我们导入或处理数据, 会产生一些空的或者是 NaN 数据,如何删除或者是填补这些 NaN 数据就是我们今天所要提到的内容.建立了一个6X4的矩阵数据并且把两个位置置为空.dates = pd.date_range('20130101', periods=6)df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','

2021-01-17 09:48:00 71

原创 Pandas DataFrame设置值

转载请注明:虚幻私塾 » pandas 设置值创建数据我们可以根据自己的需求, 用 pandas 进行更改数据里面的值, 或者加上一些空的,或者有数值的列.首先建立了一个 6X4 的矩阵数据。dates = pd.date_range('20130101', periods=6)df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','D'])""" A B

2021-01-17 08:27:12 68

原创 Pandas 选择数据

转载请注明:虚幻私塾 » Pandas 选择数据我们建立了一个 6X4 的矩阵数据。dates = pd.date_range('20130101', periods=6)df = pd.DataFrame(np.arange(24).reshape((6,4)),index=dates, columns=['A','B','C','D'])""" A B C D2013-01-01 0 1 2 32013-01-02 4 5

2021-01-17 05:50:09 94

原创 Pandas 基本介绍

转载请注明:虚幻私塾 » Pandas 基本介绍Numpy 和 Pandas 有什么不同如果用 python 的列表和字典来作比较, 那么可以说 Numpy 是列表形式的,没有数值标签,而 Pandas 就是字典形式。Pandas是基于Numpy构建的,让Numpy为中心的应用变得更加简单。要使用pandas,首先需要了解他主要两个数据结构:Series和DataFrame。Seriesimport pandas as pdimport numpy as nps = pd.Series([1,

2021-01-17 04:59:50 113

原创 numpy的 copy & deep copy 浅拷贝和深拷贝

= 的赋值方式会带有关联性首先 import numpy 并建立变量, 给变量赋值。import numpy as npa = np.arange(4)# array([0, 1, 2, 3])b = ac = ad = b改变a的第一个值,b、c、d的第一个值也会同时改变。a[0] = 11print(a)# array([11, 1, 2, 3])确认b、c、d是否与a相同。b is a # Truec is a # Trued is a # True

2021-01-17 04:40:11 125

原创 Numpy的矩阵array分割

转载请注明:虚幻私塾 » Numpy的矩阵array分割创建数据首先 import 模块import numpy as np建立3行4列的ArrayA = np.arange(12).reshape((3, 4))print(A)"""array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]])"""纵向分割print(np.split(A, 2, axis=1))"""[array([[0, 1],

2021-01-16 20:16:54 76 1

原创 Numpy的矩阵array合并

转载请注明:虚幻私塾 » Numpy的矩阵array合并np.vstack()对于一个array的合并,我们可以想到按行、按列等多种方式进行合并。首先先看一个例子:import numpy as npA = np.array([1,1,1])B = np.array([2,2,2]) print(np.vstack((A,B))) # vertical stack"""[[1,1,1] [2,2,2]]"""vertical stack本身属于一种上下合并,即

2021-01-16 18:38:40 119

原创 Numpy 索引

转载请注明:虚幻私塾 » Numpy 索引一维索引我们都知道,在元素列表或者数组中,我们可以用如同a[2]一样的表示方法,同样的,在Numpy中也有相对应的表示方法:import numpy as npA = np.arange(3,15)# array([3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) print(A[3]) # 6让我们将矩阵转换为二维的,此时进行同样的操作:A = np.arange(3,15).resha

2021-01-16 10:34:23 99

原创 numpy矩阵的运算2

转载请注明:虚幻私塾 » numpy矩阵的运算2学习资料:Numpy官方英文教材通过上一节的学习,我们可以了解到一部分矩阵中元素的计算和查找操作。然而在日常使用中,对应元素的索引也是非常重要的。依然,让我们先从一个脚本开始:import numpy as npA = np.arange(2,14).reshape((3,4)) # array([[ 2, 3, 4, 5]# [ 6, 7, 8, 9]# [10,11,12,13]]) p

2021-01-16 09:27:43 128

原创 numpy矩阵的运算1

转载请注明:虚幻私塾 » numpy矩阵的运算让我们从一个脚本开始了解相应的计算以及表示形式 :import numpy as npa=np.array([10,20,30,40]) # array([10, 20, 30, 40])b=np.arange(4) # array([0, 1, 2, 3])numpy 的几种基本运算上述代码中的 a 和 b 是两个属性为 array 也就是矩阵的变量,而且二者都是1行4列的矩阵, 其中b矩阵中的元素分别是从0到3。

2021-01-16 05:32:40 138

原创 Numpy矩阵数列array的创建

1.创建数组a = np.array([2,23,4]) # list 1dprint(a)# [2 23 4]2.指定数值类型 dtypea = np.array([2,23,4],dtype=np.int)print(a.dtype)# int 64a = np.array([2,23,4],dtype=np.int32)print(a.dtype)# int32a = np.array([2,23,4],dtype=np.float)print(a.dtype)# f

2021-01-15 05:52:34 207

原创 Numpy 矩阵的属性

这次我们会介绍几种 numpy 的属性:ndim:维度shape:行数和列数size:元素个数使用numpy首先要导入模块import numpy as np #为了方便使用numpy 采用np简写列表转化为矩阵:array = np.array([[1,2,3],[2,3,4]]) #列表转化为矩阵 print(array) #结果就是""" array([[1, 2, 3], [2, 3, 4]]) """numpy 的几种属性接着我们看看这几种属性的结果:print('n

2021-01-14 06:11:23 103

原创 Windows下vscode中通过pip安装numpy和pandas

使用vscode安装非常简单。安装numpypip install numpy输入这行代码不会报错就安装成功了import numpy as nparray = np.array([[1,2,3], [2,3,4]])print(array)安装pandaspip install pandas输入这行代码不会报错就安装成功了import pandas as pd...

2021-01-13 06:58:52 231

原创 numpy & pandas 是什么,有什么用?

1.科学运算中最为重要的2个模块numpypandas如果你要用Python进行数据分析,这2个模块非常重要。任何关于数据分析的用途,都少不了这2个模块。pandas是基于numpy写的,它是numpy的升级版本。2.它们的具体用处是什么?如果我们用tenserflow或者machine learning或者是一些神经网络都会应用到数据分析。如果运用到数据分析,使用numpy & pandas模块会让数据分析计算的非常快。比python自带的字典或者列表都要快很多。因为它们是基

2021-01-13 06:09:57 225 1

原创 Python最好的IDE:VS Code详细配置及设置

1.IDE大比拼IDE和Python的关系IDE方便编写和调试程序python IDE只有2个选择:pyCharmvscode2.VS Code安装https://code.visualstudio.com/安装时需要注意勾选添加到Path也可以勾选上下文菜单到右键安装过程在各个平台都一样3.VS必须掌握的快捷键ctrl+shift+p(一定要掌握)所有的设置都可以通过这个快捷键设置里面的功能在你使用的过程中会发现它强大的功能用的时候在搜索4.VS Code核心概念wor

2021-01-10 06:29:52 123

原创 OpenCV计算机视觉编程篇四《用直方图统计像素》

前言前期回顾: OpenCV计算机视觉编程篇三《处理图像的颜色》上面这篇里面写了操作像素相关。本章包括以下内容:计算图像直方图;利用查找表修改图像外观;直方图均衡化;反向投影直方图检测特定图像内容;用均值平移算法查找目标;比较直方图搜索相似图像;用积分图像统计像素。4.1 简介图像是由不同数值(颜色)的像素构成的,像素值在整幅图像中的分布情况是该图像的一个重要属性。本章将介绍图像直方图的概念,你将学会如何计算直方图、如何用直方图修改图像的 外观,还可以用直方图来标识图像的内容,检

2020-12-27 19:39:18 142

原创 OpenCV计算机视觉编程篇三《处理图像的颜色》

前言前期回顾: OpenCV计算机视觉编程篇二《操作像素》上面这篇里面写了操作像素相关。本章包括以下内容:用策略设计模式比较颜色;用 GrabCut 算法分割图像;转换颜色表示法;用色调、饱和度和亮度表示颜色。3.1 简介人类视觉系统的一个重要特征就是能感知颜色。人眼的视网膜中有一种被称作视锥细胞的特 殊感光细胞,专门负责感知各种颜色。视锥细胞分为三种,分别负责不同波长的光线,人脑就是 通过这些细胞产生的信号来识别各种颜色的。大多数动物却只有视杆细胞,它对光线的敏感度更 高,但是覆盖了

2020-12-27 19:25:30 218

原创 Python深度学习篇五《深度学习用于计算机视觉》

前言前期回顾:Python深度学习篇四《机器学习基础》上面这篇里面写了关于向量数据最常见的机器学习任务。好,接下来切入正题。本章包括以下内容:理解卷积神经网络(convnet)使用数据增强来降低过拟合使用预训练的卷积神经网络进行特征提取微调预训练的卷积神经网络将卷积神经网络学到的内容及其如何做出分类决策可视化本章将介绍卷积神经网络,也叫 convnet,它是计算机视觉应用几乎都在使用的一种深度学习模型。你将学到将卷积神经网络应用于图像分类问题,特别是那些训练数据集较小的问题。 如果你

2020-12-10 21:31:30 271

原创 Python和C++相似概念对比

1.self相当于c++当中的this2.类 class和C++一样3.def 定义函数()self可以默认做第一个参数,C++中的this不可以C++函数直接写在类里面 需要定义返回值的类型4.__ init__函数和C++中的构造函数类似5.for循环pythonfor index in array:c++for(int i = 0; i < (int)array.size(); i++)6.数据结构元组 () 相当于C++ 数组 vector列表 [

2020-12-06 23:13:42 248

原创 OpenCV计算机视觉编程篇二《操作像素》

2.1 简介为了构建计算机视觉应用程序,我们需要学会访问图像内容,有时也要修改或创建图像。本 章将讲解如何操作图像的元素(即像素),你将学会如何扫描一幅图像并处理每一个像素,还将 学会如何进行高效处理,因为即使是中等大小的图像,也可能包含数十万个像素。图像本质上就是一个由数值组成的矩阵。正因为如此,OpenCV 使用了 cv::Mat 结构来操作图像,这在第 1 章已经讲过。矩阵中的每个元素表示一个像素。对灰度图像(黑白图像)而言, 像素是 8 位无符号数(数据类型为 unsigned char),0

2020-11-29 10:29:17 291 1

原创 OpenCV计算机视觉编程篇一《图像编程入门》

1.1 简介本文将介绍 OpenCV 的基本要素,并演示如何完成最基本的图像处理任务:读取、显示和存 储图像。在开始之前,首先需要安装 OpenCV 库。安装过程非常简单,1.2 节会详细介绍。 所有的计算机视觉应用程序都涉及对图像的处理,因此 OpenCV 提供了一个操作图像和矩阵 的数据结构。此数据结构功能非常强大,具有多种实用属性和方法。此外,它还包含先进的内存 管理模型,对于应用程序的开发大有帮助。本章最后两节将介绍如何使用这个重要的 OpenCV 数据结构。1.2 安装 OpenCV 库Op

2020-11-28 11:04:44 306

原创 WHMCS默认后台路径更改方法

大家在使用[WHMCS系统],为了保证安全性,需要更改。下面就和大家分享一下WHMCS默认后台路径更改方法?第一步:修改WHMCS后台路径目录名$customadminpath=”修改后的目录名”;把上面这行代码加入configuration.php即可修改后的目录名是最新的WHMCS后台路径名称,如下图:第二步:修改目录路径然后通过FTP进入文件管理,把原来的admin目录重新命名为修改后的目录名,就可以了,相比不改还是要安全一些的。注意系统版本升级的时候这个目录还是需要修改的,版本升

2020-11-12 10:54:52 230 2

微软常用运行库合集下载(vs2008(sp)/vs2010(sp)/vs2012/vs2013/vs2015/vs2017) 包含32位/64位

微软常用运行库合集下载(vs2008(sp)/vs2010(sp)/vs2012/vs2013/vs2015/vs2017) 包含32位/64位

2018-11-02

在vc++中用GDAL读取tif文件中任意一点的高程值

int main(int argc, char* argv[]) { int num_iamge_size=0; BYTE *pafScanblock1; //开辟缓存区 char *file_path_name=&quot;C:/webservices/data/srtm/chinaclip.tif&quot;; GDALDataset *poDataset; //GDAL数据集 GDALAllRegister(); //注册所有的驱动 poDataset = (GDALDataset *) GDALOpen(file_path_name, GA_ReadOnly );

2017-11-23

快速寻找无向图中两点间的所有路径

函数功能:找到图中两个节点之间的所有路径 参数说明:1、Matrix 初始矩阵,将路径矩阵的形式存储,本程序对应的是一个无向图。 2、headNode 初始节点 3、endNode 结束节点 主要的思想 利用深度优先遍历的算法 1、利用result来存放每次从栈中出栈的数据,里面很可能就是要找的路径,为什么要单独提取出来,因为包含了多条路径 2、通过设置 访问是否的变量来避免回路

2018-05-23

Windows程序设计(第5版) 高清

这是一本经典的Windows核心编程指南,从第1版到第5版,引领着数十万程序员走入Windows开发阵营,培养了大批精英。作为Windows开发人员的必备参考,本书是为打算理解Windows的C和C++程序员精心设计的。第5版全面覆盖Windows XP,Windows Vista和Windows Server 2008中的170个新增函数和Windows特性。书中还讲解了Windows系统如何使用这些特性,我们开发的应用程序又如何充分使用这些特性,如何自行创建新的特性。

2014-03-03

OPENGL编程指南 高清

本书对OpenGL以及OpenGL实用函数库进行了全面而又权威的介绍,素有“OpenGL红宝书”之誉。本书的上一个版本覆盖了到OpenGL2.1版的内容。本版涵盖了OpenGL3.0和3.1的最新特性。本书以清晰的语言描述了OpenGL的功能以及许多基本的计算机图形技巧,例如创建和渲染3D模型、从不同的透视角度观察物体、使用着色、光照和纹理贴图使场景更加逼真等。另外,本书还深入探讨了许多高级技巧,包括纹理贴图、抗锯齿、雾和大气效果、NURBS、图像处理子集等。此外,本书还对一些重要的主题进行了讨论,例如提高性能、OpenGL扩展以及跨平台技术等。

2014-03-03

openGL.ppt

openGL.ppt ,VC++,三维图形开发

2012-12-10

发展自主CAE软件产业的建议与对策.pdf

发展自主CAE软件产业的建议与对策.pdf

2012-12-10

(爬虫工具)Teleport_Ultra_Installer.7z

昨天应该公司需要,想要爬取一个网站的静态资源,但是用代码写,一个一个爬很累,就算完成了估计也要一点时间,于是想着看看有没有一款工具能够完成我的任务,于是乎发现了一个很好用的工具-teleport ultra。

2020-03-29

libxl 控制excel的添加和删除

libxl 控制excel的添加和删除

2019-03-04

mfc 读写 excel 示例 C++ libxl

mfc 读写 excel 示例 C++ libxl

2019-03-04

VS2015 C++ MFC 等比缩小图片分辨率大小

VS2015 C++ MFC 等比缩小图片分辨率大小 bool CtestCImageDlg::CreateSmallPic(CString& szOldFileName, CString& szNewFilName) { const double WIDTH = 5000; const double HEIGHT = 5000; CImage oldimg; CImage newimg; oldimg.Load(szOldFileName); if (oldimg.IsNull()) return false; int nWidth = 160; int nHeight = 160; nWidth = oldimg.GetWidth(); nHeight = oldimg.GetHeight(); if (nWidth > WIDTH || nHeight > HEIGHT) { double dRatio = nWidth * 1.0 / nHeight; if (nWidth > nHeight) { nWidth = WIDTH; nHeight = nWidth / dRatio; } else { nHeight = HEIGHT; nWidth = nHeight * dRatio; } } if (!newimg.CreateEx(nWidth, nHeight, 24, BI_RGB)) { oldimg.Destroy(); return false; } int nPreMode = ::SetStretchBltMode(newimg.GetDC(), HALFTONE); newimg.ReleaseDC(); oldimg.Draw(newimg.GetDC(), 0, 0, nWidth, nHeight, 0, 0, oldimg.GetWidth(), oldimg.GetHeight()); newimg.ReleaseDC(); ::SetBrushOrgEx(newimg.GetDC(), 0, 0, NULL); newimg.ReleaseDC(); ::SetStretchBltMode(newimg.GetDC(), nPreMode); newimg.ReleaseDC(); newimg.Save(szNewFilName); newimg.Destroy(); oldimg.Destroy(); return true; }

2018-08-20

Bentley Map 安装包

BentleyMap V8i (bm08110787en.exe) Bentley Map 是一款专门为全球基础设施领域从事测绘、设计、规划、建造和运营活动的组织而设计的功能全面的GIS软件。它增强了各种 MicroStation 基本功能,可为创建、维护和分析精确的地理空间数据提供强有力的支持。用户可以轻松地将各种来源的数据整合到工程和测绘工作流程中。在与 Bentley Map 集成时,使用不同坐标系的多种数据类型可以实时进行转换。Bentley Map 还支持直接的 Oracle Spatial 数据集编辑和全面的拓扑维护。功能强大的分析和显示工具提供了详细分析、研究和决策支持。 直观的“地图管理器”可简化大量复杂空间信息的显示与查询过程。“地图管理器”采用了 MicroStation V8 XM Edition 的全新显示功能,其中包括显示顺序和透明度。用户可以在一个所见即所得的环境中轻松创建自定义地图,并可随时保存地图定义以供日后调用、编辑、分析或绘图之用。 Bentley Map 可促进企业范围内的地理空间数据集成并提升各类空间信息的价值。由于 Bentley Map 与 MicroStation 紧密集成,您可以同时操作光栅和矢量数据。 无缝的互操作环境使用户可以轻松使用各个行业的空间数据格式。Bentley Map 可通过 MicroStation 支持的任何双层数据库连接、双层 Oracle Spatial 连接或三层 Oracle Spatial/ArcGIS 连接来实施。

2018-06-22

7zip LZMA920经典版 SDK

LZMA SDK 包含以下内容: l C++ source code of LZMA Encoder and Decoder l C++ source code for .7z compression and decompression (reduced version) l ANSI-C compatible source code for LZMA / LZMA2 / XZ compression and decompression l ANSI-C compatible source code for 7z decompression with example l C# source code for LZMA compression and decompression l Java source code for LZMA compression and decompression l lzma.exe for .lzma compression and decompression l 7zr.exe to work with 7z archives (reduced version of 7z.exe from 7-Zip) l ANSI-C and C++ source code in LZMA SDK is subset of source code of 7-Zip.

2018-06-14

VS2015 C++ 调用7z SDK实现压缩和解压

VS2015 C++ 调用7z SDK实现压缩和解压,包含了编译好的dll

2018-06-14

轻轻的风wind的留言板

发表于 2020-01-02 最后回复 2020-01-02

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除