温情提醒:在翻阅了很多的csdn帖子,以及问了周边和我一样3060ti的人,
终于破解了困扰我很 久的一个问题。
30系只能用cuda11以上的版本,cuda10没法使用(部分包会呈现不匹配的错误)
正文
电脑配置:cpu —— i7 10700 显卡—— 3060ti 运行内存:16G 系统:window10
如果显卡这一块配置是一样的,那就可以直接照搬使用了。
一、下载并安装cuda
1. 选择cuda对应的版本进行下载(这里选择的是cuda11,进行下载的)
地址:
2. 选择与cuda版本适配的cudnn(这里选择的是cudnn8.1.1)
地址:
https://developer.nvidia.com/rdp/cudnn-archivehttp://cuDNN Archive
3. 查看cuda的版本和pytorch的适配问题:(在此以cuda11.1为基础,来进行其它部分的安装)
这里选择pytorch 1.8.0
4. 安装cuda以及cudnn(建议新建一个文件夹,然后对应的部分放在对应名称的文件夹里,方便查找替换)
临时路径可以不用管,安装完成自动删除的
5. 替换文件(下载的cudnn压缩包,解压后里面的文件,替换到安装路径的development文件夹里面去)
替换完成--------------------------
二、下载安装pytorch和torchvision
版本对应关系参考:
1. 下载安装包(如果用控制台里指令下载的方式,这步可以略过)
这里我选取的是:torch==1.8.0 torchvision==0.9.0
https://download.pytorch.org/whl/torch_stable.htmlhttp://xn--ghqu6tnb8117a
注:建议保存到一个直接路径,创建一个文件夹,路径方便读取
指令安装:
(打开控制台,切换环境,指令下载安装)
pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio===0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
2. 打开控制台程序,创建一个新的环境:(这里默认都安装了anaconda)
conda create -n <环境名> python= 3.8
3. 激活环境:
activate <环境名>
4. 指令安装:(下载安装包的,这步略过)
pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio===0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
5. 切换路径到储存下载文件的地方: cd..(返回上一级路径) cd (切换到某路径)
我的路径是这样的,比较简短,我就直接切到这里面来,进行安装
6. 安装pytorch:( pip install <whl后缀包的文件名> )
pip install torch-1.8.0+cu111-cp38-cp38-win_amd64.whl
7. 安装torchvision:( pip install <whl后缀包的文件名> )
pip install torchvision-0.9.0+cu111-cp38-cp38-win_amd64.whl
8. 测试pytorch是否能运行:
import torch
torch.cuda.is_available()
torch.zeros(1).cuda()
注:不出意外,到此前半部分安装结束
三、下载安装mmcv和mmdet
1. mmcv的下载命令,往下滑可以看到,找到自己版本对应的指令就行:
https://github.com/open-mmlab/mmcvhttp://xn--ces6a259grq7b
这里需要关注的一个问题,在你选定版本过后,要记得去看看有没有对应版本的windows版本或者linux版本。
(例如;在安装的时候我就遇到了这个问题,mmcv1.3.9没有windows的版本,详情信息点入链接里面去查看安装包合集,有没有window后缀的包)
这里经过不断的试错过后,我选择的mmcv-full==1.4.5版本的,后面也成功运行
2. 指令安装mmcv:
pip install mmcv-full==1.4.5 -f https://download.openmmlab.com/mmcv/dist/cu111/torch1.8.0/index.html
3. 如果不是我这个方案的,也可以自己去看看MMDetection和MMCV的版本对应关系,以免不匹配》》》》
4. 安装mmdet:
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
pip install -r requirements/build.txt
pip install -v -e .
这样基本上就,完成了所有的安装步骤了
出现的一些问题,或与各位遇到时候可以借鉴一下:
1. no kernel image is available for execution on the device问题--(基本可判断为版本不匹配)
大概意思就是说当前GPU的算力与当前版本的Pytorch依赖的CUDA算力不匹配(3060ti算力大概是8.6,而当前版本的pytorch依赖的CUDA算力仅支持3.7,5.0,6.0,7.0)
算力查看compute capability:(匹配适用的cuda)
https://developer.nvidia.com/cuda-gpushttp://CUDA GPUs
如果不知道自己的安装的cuda版本是多少,可以查询 指令: nvcc -V
总的一句话,要选相互匹配的版本,以免浪费时间。。。。
加油!!!!!!!!!!!!!!!!!!!!!!!!!!!!!