1、图:用来表示“多对多”的关系
图的要素:顶点、边
一组顶点:通常用V来表示顶点的集合
一组边:通常用E来表示边的集合
非空有限顶点集合V与有限边集合E构成了图:G=(V,E)
对于图G,若E为有向边的集合,则称该图为有向图;若E为无向边的集合,则称该图为无向图。
若x,y为图G中的两个顶点。则<x,y>称为从顶点x到顶点y的一条有向边,而(x,y)称为顶点x和顶点y相关联的一条边。
2、用邻接矩阵来表示一个图
邻接矩阵:是表示顶点之间关系的矩阵,由顶点个数来确定邻接矩阵的阶数。设G(V,E)是具有n个顶点的有向图,则可表示为:
A[i][j]=1 <i,j>是图中的一条存在边
A[i][j]=0 <i,j>不存在
*对于无向图的邻接矩阵,因为(i,i)不存在,所以矩阵对角线上的元素全为0,且(i,j)与(j,i)相同,所以无向图中我们真正可用的数据为上三角或下三角部分,为了节省空间,我们可以用一个长度为n(n+1)/2的一维数组来存储我们所需数据,其中Gij在此数组中的下标为(i(i+1)/2+j)。
关于顶点的“度”:
对于有向图,矩阵中“1”的个数为图的边数,A[i][j],矩阵中第i行的元素之和为顶点A的出度,第j列元素之和为顶点A的入度。
对于无向图,矩阵中“1”的个数为图的边数的两倍,A[i][j],矩阵中第i行元素之和或第j列元素之和即为顶点A的度。
3、图的邻接矩阵存储表示:
#include<stdio.h>
#define n 5 //此处设置顶点数为5
#define MAXSIZE 1000
typedef struct
{
int arc[n][n];
char nodeinfo[n+1];
int edge;
}Graph;
void Create(Graph *G)
{
//输入边数
printf("输入无向图的边数:");
scanf("%d",&G->edge);
//输入结点中的字母,完善顶点数组
for(int i=1;i<(n+1);i++)
{
printf("输入第%d结点的字母:",i);
scanf("%c",&G->nodeinfo[i]);
getchar();
}
//初始化邻接矩阵:将每一个位置的权值设置为最大,此处用MAXSIZE代表无穷大
for(int j=0;j<n;j++)
for(int k=0;k<n;k++)
{
G->arc[j][k]=MAXSIZE;
}
//将已知权值写入邻接矩阵
int vi,vj,q;
for(int f=0;f<n;f++)
{
for(int a=0;a<=f;a++)
{
printf("输入边(vi,vj)的下标,以及对应的权值q: ");
scanf("%d %d %d",&vi,&vj,&q);
G->arc[vi][vj]=q;
G->arc[vj][vi]=G->arc[vi][vj];
}
}
}
int main()
{
Graph G;
Create(&G);
return 0;
}