ML
tju_tonge
荆棘给我的挣扎,我咬牙还给它
展开
-
提高效率的小技巧 [Linux]
希望一直为之努力的都能有个令人满意的结果~ ????今天学到的两点小技巧,可以提高效率,知识点比较零散。服务器离线安装第三方库(Anaconda)使用proxychains失败,于是百度到一种服务器离线安装库的方法在这一网站查找第三方库的名字,找到对应版本,下载.whl文件或.tar.gz文件。下载好后,对于.whl文件,直接运行pip install xxx.whl即可;对于.tar.gz文件,首先解压该文件gzip -d xxxx.tar.gz, tar -xvf xxxx.tar),然后原创 2021-10-05 01:25:52 · 257 阅读 · 1 评论 -
Pytorch中报过的错及解决方法(持续更新中)
1.输出的维度和数据集的label大小不一致RuntimeError: Assertion `cur_target >= 0 && cur_target < n_classes' failed. at C:\w\1\s\tmp_conda_3.7_055457\conda\conda-bld\pytorch_1565416617654\work\aten\src\THNN/generic/ClassNLLCriterion.c:94检查最后输出的维度需要与类的数量是否相匹原创 2020-06-24 21:53:34 · 4350 阅读 · 3 评论 -
Pytorch 打印网络中特定一层的参数
1.打印网络中指定的一层的参数:print(net.state_dict()['module.conv1.1.bias']) # 填该层参数名如果不知道要打印的这一层的名称(key),可以通过以下方式获得:for name in net.state_dict(): print(name)就会打印出网络每一层的名称2.打印整个网络每一层的名称和参数值:for name, parameters in net.named_parameters(): print(name, ':', par原创 2021-01-07 20:29:43 · 3881 阅读 · 0 评论 -
CIFAR100数据集介绍及使用方法
CIFAR10、CIFAR100数据集的官网链接:http://www.cs.toronto.edu/~kriz/cifar.html一、CIFAR100概述CIFAR100数据集有100个类。每个类有600张大小为32×3232\times 3232×32的彩色图像,其中500张作为训练集,100张作为测试集。对于每一张图像,它有fine_labels和coarse_labels两个标签,分别代表图像的细粒度和粗粒度标签,对应下图中的classes和superclass。也就是说,CIFAR100.原创 2020-11-02 00:48:29 · 74636 阅读 · 6 评论 -
Linux服务器安装Anaconda、jupyter lab及Pytorch环境
一、安装Anaconda因为之前在服务器A上配置过环境,现在想要在新的服务器上配置环境。可以直接将Anaconda的压缩包从服务器A传到服务器B上:在服务器A上输入scp命令:$ scp Anaconda3-2020.02-Linux-x86_64.sh servername@yourIPaddress:/targerfolder(拷贝整个文件夹:scp -r floder username@ip:filepath)拷贝完成后,输入bash 安装包名称安装,一路enter。上一步完成后添加环境原创 2020-10-24 18:54:44 · 954 阅读 · 1 评论 -
pytorch KL散度学习
pytorch官方文档中给出了说明下面是在学习过程中需要注意的:KL散度计算公式KL(p∣∣q)=∑P(x)log(P(X)Q(x))KL(p||q) =\sum{P(x)log(\frac{P(X)}{Q(x)})}KL(p∣∣q)=∑P(x)log(Q(x)P(X))其中P(x)P(x)P(x)是真实的分布,是目标;Q(x)Q(x)Q(x)是拟合分布,是想要改变的分布。KL散度值越小,分布越接近。性质KL散度值 ≥\geq≥ 0,当P(x)=Q(x)P(x) = Q(x)P(原创 2020-07-21 16:45:36 · 10362 阅读 · 6 评论 -
AutoEncoder学习记录
1.基本结构AutoEncoder 属于神经网络范畴,AutoEncoder 重点关注的是 Hidden Layer,而它通常只有一层 Hidden Layer。AutoEncoder包含encoder与decoder两部分:通过encoder将输入x映射到特征空间z,再通过decoder将抽象表示z映射回原始空间,通常记作x’,是对样本的重构。对于基于神经网络的AutoEncoder模型...原创 2020-05-07 20:58:54 · 683 阅读 · 0 评论