
python
文章平均质量分 97
python或者其他编程语言的学习分享
GISer Liu
一名GIS、遥感、云计算和人工智能领域学习者
展开
-
LSTM 与 TimesNet的时序分析对比解析
🙂🎉本文系统对比了基于插补的LSTM和端到端TimesNet两种时序分类方法,通过PyPOTS库的完整实现和实验分析,帮助读者:1. 理解不同缺失值处理策略的优劣2. 掌握TimesNet的1D→2D变换核心原理3. 根据数据特性(缺失率/周期性)选择最佳方案4. 快速复现实验(提供完整代码和调参建议)适用于医疗诊断、工业检测等含缺失值的时序分类场景。原创 2025-05-26 02:12:43 · 536 阅读 · 0 评论 -
PyPOTS与SAITS的自定义医疗时序数据缺失值插补全流程解析
你好,我是GISer Liu🙂,本文以合成的eICU数据集为例,详细演示了自定义时序数据的预处理流程和基于PyPOTS的SAITS模型进行插补的完整过程。主要有:1. **数据预处理**:加载原始数据,对齐时间步长,划分数据集,标准化特征,创建人工缺失2. **模型训练**:配置和训练SAITS模型,实现高质量的缺失值插补3. **结果应用**:将插补后的数据转换回原始格式,用于下游任务通过这个过程,各位读者不仅解决了时序数据中的缺失值问题,还了解了深度学习插补方法的工作原理和应用策略。原创 2025-05-23 01:25:20 · 895 阅读 · 0 评论 -
BRITS时序分析:端到端学习的优势
本文探讨了端到端学习在时序数据处理中的重要性,并通过BRITS模型展示了直接处理含缺失值时序数据的方法。相比两阶段处理,端到端学习能够更好地利用缺失模式中的信息,减少误差累积,并针对最终任务整体优化。原创 2025-05-20 02:24:19 · 761 阅读 · 0 评论 -
理解LSTM网络:从时序分析开始
本文详细解析了LSTM的工作原理,包括LSTM的结构设计、门控机制,以及在时序数据处理中的实际应用。长短期记忆网络(Long Short-Term Memory, LSTM)是一种特殊的RNN结构,能有效解决传统循环神经网络中的长期依赖问题。本文将基于Staudemeyer和Morris的教程详细解析LSTM的工作原理,并结合PyTorch实现展示其在处理含缺失值时序数据中的应用。原创 2025-05-18 02:23:33 · 834 阅读 · 0 评论 -
数据缺失不用愁:PyPOTS库与SAITS模型深度解析
💡 本文深入剖析了基于自注意力机制的SAITS模型在时间序列缺失值插补中的应用。通过结合论文解读和PyPOTS实战案例,文章详细介绍了SAITS的双任务学习框架、自注意力机制原理及其实际应用,并提供了完整的代码实现与性能分析,帮助读者掌握这一先进的时序插补技术。原创 2025-05-16 02:57:31 · 720 阅读 · 0 评论 -
PyPOTS: 时间序列的Python工具箱与股票市场的应用
本文全面介绍了时间序列数据分析及其在金融领域的应用,重点讲解了PyPOTS框架的核心功能和使用方法。文章包含以下主要内容:时间序列基础:详细解析了时间序列的定义、特点、分类体系以及主要分析任务(预测、分类、聚类、异常检测、插补)PyPOTS框架:介绍了这一专门处理缺失值时间序列的开源工具箱,包括其核心理念、支持的任务与算法(SAITS、BRITS等)以及生态系统组件(TSDB、PyGrinder等)实战案例:提供了完整的股票数据分析代码,涵盖数据生成、缺失值处理、填补和预测全流程原创 2025-05-14 02:49:06 · 1163 阅读 · 0 评论 -
基于Zigent框架的DeepSeek智能体完全开发指南
Hello,大家好,我是GISer Liu😁,一名热爱AI技术的GIS开发者。Zigent是基于Salesforce AI Research团队开发的AgentLite框架改进的智能体开发框架。它专为构建和研究基于LLM的任务导向型多Agent系统设计。原创 2025-02-17 02:59:44 · 1455 阅读 · 0 评论 -
DeepSeek+Camel多智能体框架万字核心解析(附代码)
Hello,大家好,我是GISer Liu😁,一名热爱AI技术的GIS开发者。本系列是作者参加DataWhale 2025年2月份组队学习的技术笔记文档,这里整理为博客,希望能帮助学习Agent的开发者少走弯路!在上一篇文章中,我们详细讲解了Camel的基本环境配置,为后续的学习打下了坚实的基础。本文将深入探讨Camel的Agent设计思想及其完整组成。通过本文,你将全面了解Camel Agent的核心概念、设计理念以及实际应用中的关键点。原创 2025-02-16 02:59:20 · 1508 阅读 · 0 评论 -
使用DeepSeek实现一个复杂旅游规划智能体
ReActAgent是一个结合推理(Reasoning)和行动(Acting)的动态LLM(大语言模型)Agent框架。它的核心思想是通过推理和行动交替进行,以动态的方式完成复杂的任务。简单来说,ReActAgent不仅仅依靠大语言模型单纯地生成回答,而是通过交替推理和执行操作来更有效地完成任务。原创 2025-02-15 02:57:59 · 1790 阅读 · 1 评论 -
基于DeepSeek手搓一个LLM智能体
Agent(智能体)是一种能够自主感知环境、决策并采取行动的系统。与传统的语言模型不同,Agent 不仅仅是一个生成文本的工具,而是一个具备决策能力和执行能力的智能系统。通过与外部环境(如数据库、API、用户交互等)的交互,Agent 可以完成复杂的任务。核心思想:自主性:无需人为干预,独立感知环境并作出反应。灵活性:通过模块化设计,处理多种任务。可扩展性:通过集成更多服务和功能,持续增强能力。交互性:与用户和其他系统无缝互动,完成任务。原创 2025-02-12 02:58:06 · 2593 阅读 · 1 评论 -
使用DeepSeek构建Camel多智能体框架:基本环境配置
Hello,大家好,我是GISer Liu😁,一名热爱AI技术的GIS开发者,本系列是作者参加DataWhale2025年2月份组队学习的技术笔记文档,这里整理为博客,希望能帮助学习Agent的开发者少走弯路!是一个开源的灵活框架,专注于构建和模拟多智能体系统(MAS)。它提供了一套完整的工具链,支持从智能体角色定义、协作流程设计到复杂环境模拟的全流程开发。其核心优势在于轻量级架构高度可定制化和面向多角色协作的交互设计,特别适合需要模拟人类-智能体或智能体-智能体协作的场景。原创 2025-02-11 04:22:05 · 3106 阅读 · 11 评论 -
Tranformer模型的Pytorch代码实现
Hello,大家好,我是GISer Liu😁,一名热爱AI技术的GIS开发者,本系列文章是作者参加DataWhale2025年1月份学习赛,旨在讲解Transformer模型的理论和实践。😲Transformer模型自2017年由Vaswani等人提出以来,已经成为自然语言处理(NLP)领域的重要基石。与传统的RNN和CNN不同,Transformer完全依赖于自注意力机制(Self-Attention)来捕捉输入序列中的全局依赖关系。原创 2025-01-28 02:59:13 · 1101 阅读 · 0 评论 -
深入理解Transformer中的解码器原理(Decoder)与掩码机制
Hello,大家好,我是GISer Liu😁,一名热爱AI技术的GIS开发者,本系列文章是作者参加DataWhale2025年1月份学习赛,旨在讲解Transformer模型的理论和实践。😲🙂本文将从Decoder(解码器)的角度出发,深入解析Transformer模型在生成任务中的核心机制。我们将重点探讨Decoder的结构设计、信息传递机制以及其在序列生成任务中的关键作用。通过详细分析Decoder的掩码机制(Masking)填充机制(Padding)原创 2025-01-25 02:58:15 · 3335 阅读 · 2 评论 -
深入理解Transformer中的编码器(Encoder)与注意力机制
Hello,大家好,我是GISer Liu😁,一名热爱AI技术的GIS开发者,本系列文章是作者参加DataWhale2025年1月份学习赛,旨在讲解Transformer模型的理论和实践。😲本文将从Attention机制的原理出发,详细解析Transformer模型的核心组件——编码器(Encoder)的结构与工作流程。我们将重点探讨自注意力机制(Self-Attention)和多头注意力机制(Multi-Head Attention)的设计思想,以及它们在序列数据处理中的作用。原创 2025-01-22 02:57:43 · 1089 阅读 · 0 评论 -
Transformer详解:Attention机制原理
Hello,大家好,我是GISerLiu😁,一名热爱AI技术的GIS开发者,本系列文章是作者参加DataWhale2025年1月份学习赛,旨在讲解Transformer模型的理论和实践。😲本文将详细探讨Attention机制的原理、其在Transformer模型中的应用,以及Transformer模型如何通过自注意力机制(Self-Attention)和多头注意力机制(Multi-HeadAttention)来处理序列数据。原创 2025-01-19 02:58:25 · 1498 阅读 · 0 评论 -
Seq2Seq模型:从基础到注意力机制的演进
Hello,大家好,我是GISer Liu😁,一名热爱AI技术的GIS开发者,本系列文章是作者参加DataWhale2025年1月份学习赛,旨在讲解Transformer模型的理论和实践。😲Seq2Seq模型概述Encoder-Decoder架构详解注意力机制的引入与改进帮助读者快速理解如何Transformer模型原理;希望通过本文,大家能够掌握Seq2Seq模型的核心思想,了解注意力机制的重要性,并为后续学习Transformer模型打下坚实的基础。原创 2025-01-16 02:50:33 · 1068 阅读 · 0 评论 -
DataWhale冬令营-定制地理信息提取大模型(数据集构建与设计方案)
Hello,大家好!我是GISer Liu😁,一名热爱AI技术的GIS开发者。AI-MapBook是一个作者前段时间结合了大语言模型(LLM)与地图技术的创新项目,旨在从文本中提取地理信息并生成相应的地图展示。该项目的核心目标是利用大模型的强大生成能力,结合本地部署的高效性,实现对地理信息的精准提取和格式化输出,从而为文本中的地理信息提供自动化的地图展示。原创 2024-12-16 01:43:48 · 1063 阅读 · 12 评论 -
DataWhale冬令营-定制个人专属大模型(数据集构建源码思路分享)
Hello,大家好!我是GISer Liu😁,一名热爱AI技术的GIS开发者。本系列是作者参加2024DataWhale冬令营的BaseLine学习文章,希望我的分享能对各位学习者有帮助。😲在本文中,作者将通过以下几个部分,帮助读者理解整个微调LLM的流程并且分享作者自制的数据集生产代码,下面是文章主要内容大纲;LLM微调名词解释个人专属大模型定制流程构建个人数据集模型训练与部署。原创 2024-12-10 03:00:10 · 1254 阅读 · 9 评论 -
深入FastAPI:依赖注入详解
依赖注入是一种设计模式,用于实现松耦合的系统设计。在 FastAPI 中,依赖注入允许我们将路径操作函数所需的依赖项声明为函数参数,并由 FastAPI 自动提供这些依赖项。这种方式不仅减少了代码重复,还使得代码更加模块化和易于测试。FastAPI 的依赖注入系统是一个强大且灵活的工具,它使得代码更加模块化、可维护和易于测试。通过函数依赖、类依赖、子依赖项、路径操作装饰器依赖和全局依赖,开发者可以轻松地管理各种复杂的依赖关系。原创 2024-11-28 02:40:11 · 989 阅读 · 0 评论 -
深入FastAPI:表单和文件上传详解
FastAPI 是一个高性能的 Web 框架,广泛用于构建 API。在实际开发中,我们经常需要处理表单数据和文件上传。本文将深入探讨如何在 FastAPI 中处理表单和文件,并通过详细的代码示例和解释,帮助读者由浅入深地理解这些概念。原创 2024-11-23 02:35:31 · 1775 阅读 · 0 评论 -
深入FastAPI:响应模型参数详解
通过本文,作者详细介绍了 FastAPI 中的响应模型及其相关功能。带领各位学习了如何定义响应模型、使用多个模型、处理不同类型的响应(如 Union 模型、模型列表、任意 dict 构成的响应)以及如何设置响应状态码。这些功能使得 FastAPI 成为一个强大且灵活的框架,能够满足各种复杂的 API 开发需求。原创 2024-11-19 02:18:16 · 767 阅读 · 0 评论 -
深入FastAPI:请求体参数详解
在现代 Web 开发中,构建高效、易维护的 API 是至关重要的。FastAPI 是一个基于 Python 的现代、快速(高性能)的 Web 框架,用于构建 API。它不仅提供了强大的功能,还具有直观的语法和自动化的文档生成能力。本文将深入探讨 FastAPI 中的请求体参数,包括 GET 和 PUT 请求的处理、Cookie 和 Header 参数的使用,以及如何通过 FastAPI 的文档界面和 requests 库进行测试。原创 2024-11-16 02:57:37 · 1504 阅读 · 0 评论 -
深入FastAPI:路径参数、查询参数及其检校
FastAPI 是一个现代、快速(高性能)的 Web 框架,基于 Python 3.7+ 标准类型提示。它特别适合构建 API,因为它支持异步编程、自动生成文档,并且具有强大的数据验证功能。本文将深入探讨 FastAPI 中的路径参数、查询参数及其检校机制,并通过实际代码示例帮助你更好地理解和应用这些概念。FastAPI 是一个基于 Python 的 Web 框架,旨在提供高性能、易于使用和快速开发的特性。它利用 Python 的类型提示来进行数据验证和自动生成文档,使得开发 API 变得更加简单和高效。原创 2024-11-13 02:52:42 · 1003 阅读 · 0 评论 -
Python量化交易(七):量化回测
量化回测是量化投资中不可或缺的一环,通过对历史数据的回测,可以评估策略的有效性和稳定性。本文将详细介绍如何使用Python进行量化回测,并结合实际案例进行讲解。原创 2024-11-04 00:57:52 · 6177 阅读 · 0 评论 -
Python量化交易(五):量化择时策略
量化择时,即利用数量化分析方法,通过技术指标组合,对交易标的进行低买高卖的操作,期望获得超越简单买入持有策略的收益风险表现。核心:技术分析(客观型技术分析)优点:具有很强的可传授性和可复制性客观型技术分析:分析过程中使用的分析方法,100%客观定义,不含主观定义;特点:具有很强的可传授性和可复制性,任何人只要花费时间精力去理解,掌握;便可以得到令人满意的投资业绩;MACD(Moving Average Convergence and Divergence),即异同移动平均线。原创 2024-10-29 02:35:41 · 3195 阅读 · 0 评论 -
Python量化交易(四):量化选股策略
无效市场、弱式有效市场、半强式有效市场和强式有效市场。不同类型的市场对投资者的策略提出了不同的要求。无效市场:当前股价未反映历史价格信息,投资者可以通过技术分析过去的价格信息以获取未来股价的变化倾向,从而在交易中获利。弱式有效市场:技术分析失效,基本面分析仍然有效。半强式有效市场:基本面分析失效,内幕消息仍然有效。强式有效市场:所有信息都已反映在股价中,投资者只能获得市场平均收益。量化选股策略。原创 2024-10-24 23:52:36 · 2860 阅读 · 0 评论 -
Python量化交易(三):股票数据应用与获取
主要实现对股票等金融产品从数据采集、清洗加工到数据存储的全过程自动化运作,为金融分析人士提供快速、整洁、和多样的便于分析的数据,为他们在数据获取方面极大地减轻工作量,使他们更加专注于策略和模型的研究和实现上。我们可以通过API接口获取不同类型的指数K线数据,包括综合指数(如上证指数、深证综指)、规模指数(如上证50、沪深300)、行业指数(一级行业、二级行业等)、策略指数、成长指数、价值指数、主题指数、基金指数和债券指数。都是股票分析中的工具,它们提供了不同的视角和方法来评估股票的投资价值。原创 2024-10-23 02:56:35 · 4540 阅读 · 0 评论 -
Python量化交易(二):金融市场的基础概念
货币金融学是研究货币、金融市场、金融机构以及它们如何影响经济活动的学科。本文将详细介绍货币金融学的基础概念,包括金融市场、货币与通货膨胀、货币政策与财政政策、外汇市场等。概念定义举例货币在付款或还债等经济活动中普遍接受的物品。现金、银行存款等。投资是为了获得可能但并不确定的未来值(Future value)而作出牺牲确定的现值(Present value)的行为。原创 2024-10-20 02:58:25 · 1484 阅读 · 0 评论 -
AI金融攻防赛:YOLO模型的数据增强与性能优化(DataWhale组队学习)
物体检测是计算机视觉中的一个重要任务,它**不仅需要识别图像中的对象类别,还要确定对象在图像中的位置,并以边界框的形式标注出来(类别+位置)**。物体检测的应用场景包括自动驾驶、视频监控、工业检测、金融凭证核验等领域。原创 2024-10-19 00:00:46 · 1064 阅读 · 0 评论 -
大模型生图安全疫苗注入——进阶解决方案与系统优化(DataWhale组队学习)
在之前的博客中,我们展示了如何利用**Qwen模型**进行文本改写,并通过多轮次对话优化模型的输出结果。然而,由于大语言模型生成结果的多样性和不确定性,确保生成文本的**安全性和语义一致性**仍然是一个挑战。 本篇博客将基于上一部分的代码实现,对其进行**扩展和深入探讨**;原创 2024-10-18 23:51:05 · 1505 阅读 · 0 评论 -
大模型生图安全疫苗注入赛道 - 赛题评测与优化策略(DataWhale组队学习)
文生图生成任务不仅要求生成图像的高质量,同时对文本和图像的安全性有严格检测。本文重点介绍了大赛的全链路评测框架,并探讨了文本与图像检测模型的实现细节,帮助大家掌握如何构建和优化模型。原创 2024-10-15 23:58:23 · 1512 阅读 · 0 评论 -
AI金融攻防赛:YOLO理论学习及赛题进阶思路(DataWhale组队学习)
物体检测是计算机视觉中的一个重要任务,它不仅需要识别图像中的对象类别,还要确定对象在图像中的位置,并以边界框的形式标注出来(类别+位置)。物体检测的应用场景包括自动驾驶、视频监控、工业检测、金融凭证核验等领域。物体检测的一般步骤输入:一张图像或视频帧,对其进行缩放。特征提取:通过卷积神经网络(CNN)提取视觉特征,为检测提供基础。候选区域生成:部分算法会生成可能含有目标的区域(如R-CNN)。分类与边界框回归:判断区域内物体的类别并回归出精确的边界框坐标。非极大值抑制(NMS)原创 2024-10-15 23:56:42 · 1329 阅读 · 0 评论 -
Python量化交易(一):量化投资基本概念
投资是指各类经济主体(包括政府、金融机构、企业和个人)为了获得未来的收益或效益,预先垫付一定量的货币或实物,以经营某项事业的行为活动。从经济学的广泛意义上讲,投资是为获得一定的预期社会经济效益而进行的资金或资本物的投入及其活动过程。固定资产投资:指用于购置或建设固定资产(如厂房、设备、建筑物等)的资金投入。证券投资:指购买股票、债券、基金等金融产品的资金投入,以期获得资本增值或利息收入。教育投资:指个人或家庭为提高自身或子女的教育水平而进行的资金投入,以期获得更好的职业发展机会和收入。健康投资。原创 2024-10-15 03:00:17 · 2516 阅读 · 0 评论 -
大模型生图安全疫苗注入赛题解析(DataWhale组队学习)
本文中,我们介绍了全球AI攻防挑战赛的背景和任务,并详细探讨了攻击与防御策略。我们补充了代码实现,包括Prompt诱导与绕过策略、批量优化与自动评估,以及模型防御机制设计。原创 2024-10-12 23:56:06 · 1668 阅读 · 0 评论 -
AI金融攻防赛:金融场景凭证篡改检测(DataWhale组队学习)
本次AI金融攻防挑战赛不仅让我们熟悉了金融场景下的AI模型应用,也让我们在图像检测和语义分割领域积累了宝贵的实践经验。通过这次比赛,我们了解了如何构建从数据预处理到模型训练、测试再到结果提交的完整流程。原创 2024-10-12 23:54:44 · 1733 阅读 · 3 评论 -
LeetCode从入门到超凡(五)深入浅出---位运算
本文详细介绍了位运算的基本概念、操作及其应用。首先,解释了位运算的定义及其在提高程序性能方面的优势,并通过二进制数的转换方法帮助理解位运算的基础。接着,深入探讨了六种基本的位运算操作:按位与(AND)、按位或(OR)、按位异或(XOR)、取反(NOT)、左移(SHL)和右移(SHR),并通过具体示例展示了每种操作的运算规则和应用场景。原创 2024-09-30 01:53:48 · 1589 阅读 · 0 评论 -
LeetCode从入门到超凡(四)深入浅出理解贪心算法
贪心算法是一种经典的算法策略,广泛应用于解决最优化问题。在许多情况下,贪心算法能够以简单且高效的方式解决复杂问题。因此,掌握贪心算法对开发人员和算法爱好者来说非常重要。本文旨在帮助读者深入理解贪心算法的工作原理、特征、正确性证明及其实际应用,并通过多个实例的分析和Python代码实现来巩固理解。贪心算法是一种在每一步选择中都采取当前状态下最优或最有利的选择,从而期望通过局部最优解最终得到全局最优解的算法。原创 2024-09-28 02:34:22 · 922 阅读 · 0 评论 -
LeetCode从入门到超凡(三)回溯算法
回溯算法(Backtracking)是一种基于试错思想的搜索算法,旨在通过系统地探索所有可能的解空间来寻找问题的解。它通过逐步构建候选解,并在发现当前路径无法满足求解条件时,回退到上一步(即回溯),重新选择其他可能的路径,从而避免不必要的搜索。这种“走不通就回退”的策略使得回溯算法在处理复杂问题时具有较高的效率。试探与回退:在搜索过程中,算法会尝试每一种可能的选择,如果发现当前选择无法继续构建有效的解,则回退到上一步,尝试其他选择。递归实现。原创 2024-09-25 02:06:34 · 1417 阅读 · 0 评论 -
LeetCode从入门到超凡(一)枚举算法
本文主要讲解枚举算法。💕💕😊枚举算法通过列举所有可能的解来找到满足条件的解。它是一种“暴力搜索”方法,通过逐一检查每个可能的解,判断其是否满足问题的要求。核心思想:枚举算法的核心思想是“穷举”,即通过系统地列举所有可能的情况,并逐一验证这些情况是否满足问题的条件。这种思想适用于那些解空间较小且可以预先确定的问题。原创 2024-09-18 00:05:27 · 1203 阅读 · 0 评论 -
一文读懂K-Means原理与Python实现
在本文中,你将学习到K-means算法的数学原理,作者会以尼日利亚音乐数据集为案例。带你了解了如何通过可视化的方式发现数据中潜在的特征。最后对训练好的K-means模型进行评估。原创 2022-06-20 18:32:33 · 12627 阅读 · 111 评论