
LLM
文章平均质量分 97
GISer Liu
一名GIS、遥感、云计算和人工智能领域学习者
展开
-
基于Zigent框架的DeepSeek智能体完全开发指南
Hello,大家好,我是GISer Liu😁,一名热爱AI技术的GIS开发者。Zigent是基于Salesforce AI Research团队开发的AgentLite框架改进的智能体开发框架。它专为构建和研究基于LLM的任务导向型多Agent系统设计。原创 2025-02-17 02:59:44 · 1463 阅读 · 0 评论 -
DeepSeek+Camel多智能体框架万字核心解析(附代码)
Hello,大家好,我是GISer Liu😁,一名热爱AI技术的GIS开发者。本系列是作者参加DataWhale 2025年2月份组队学习的技术笔记文档,这里整理为博客,希望能帮助学习Agent的开发者少走弯路!在上一篇文章中,我们详细讲解了Camel的基本环境配置,为后续的学习打下了坚实的基础。本文将深入探讨Camel的Agent设计思想及其完整组成。通过本文,你将全面了解Camel Agent的核心概念、设计理念以及实际应用中的关键点。原创 2025-02-16 02:59:20 · 1519 阅读 · 0 评论 -
使用DeepSeek实现一个复杂旅游规划智能体
ReActAgent是一个结合推理(Reasoning)和行动(Acting)的动态LLM(大语言模型)Agent框架。它的核心思想是通过推理和行动交替进行,以动态的方式完成复杂的任务。简单来说,ReActAgent不仅仅依靠大语言模型单纯地生成回答,而是通过交替推理和执行操作来更有效地完成任务。原创 2025-02-15 02:57:59 · 1813 阅读 · 1 评论 -
基于DeepSeek手搓一个LLM智能体
Agent(智能体)是一种能够自主感知环境、决策并采取行动的系统。与传统的语言模型不同,Agent 不仅仅是一个生成文本的工具,而是一个具备决策能力和执行能力的智能系统。通过与外部环境(如数据库、API、用户交互等)的交互,Agent 可以完成复杂的任务。核心思想:自主性:无需人为干预,独立感知环境并作出反应。灵活性:通过模块化设计,处理多种任务。可扩展性:通过集成更多服务和功能,持续增强能力。交互性:与用户和其他系统无缝互动,完成任务。原创 2025-02-12 02:58:06 · 2616 阅读 · 1 评论 -
使用DeepSeek构建Camel多智能体框架:基本环境配置
Hello,大家好,我是GISer Liu😁,一名热爱AI技术的GIS开发者,本系列是作者参加DataWhale2025年2月份组队学习的技术笔记文档,这里整理为博客,希望能帮助学习Agent的开发者少走弯路!是一个开源的灵活框架,专注于构建和模拟多智能体系统(MAS)。它提供了一套完整的工具链,支持从智能体角色定义、协作流程设计到复杂环境模拟的全流程开发。其核心优势在于轻量级架构高度可定制化和面向多角色协作的交互设计,特别适合需要模拟人类-智能体或智能体-智能体协作的场景。原创 2025-02-11 04:22:05 · 3134 阅读 · 11 评论 -
Tranformer模型的Pytorch代码实现
Hello,大家好,我是GISer Liu😁,一名热爱AI技术的GIS开发者,本系列文章是作者参加DataWhale2025年1月份学习赛,旨在讲解Transformer模型的理论和实践。😲Transformer模型自2017年由Vaswani等人提出以来,已经成为自然语言处理(NLP)领域的重要基石。与传统的RNN和CNN不同,Transformer完全依赖于自注意力机制(Self-Attention)来捕捉输入序列中的全局依赖关系。原创 2025-01-28 02:59:13 · 1102 阅读 · 0 评论 -
深入理解Transformer中的解码器原理(Decoder)与掩码机制
Hello,大家好,我是GISer Liu😁,一名热爱AI技术的GIS开发者,本系列文章是作者参加DataWhale2025年1月份学习赛,旨在讲解Transformer模型的理论和实践。😲🙂本文将从Decoder(解码器)的角度出发,深入解析Transformer模型在生成任务中的核心机制。我们将重点探讨Decoder的结构设计、信息传递机制以及其在序列生成任务中的关键作用。通过详细分析Decoder的掩码机制(Masking)填充机制(Padding)原创 2025-01-25 02:58:15 · 3354 阅读 · 2 评论 -
深入理解Transformer中的编码器(Encoder)与注意力机制
Hello,大家好,我是GISer Liu😁,一名热爱AI技术的GIS开发者,本系列文章是作者参加DataWhale2025年1月份学习赛,旨在讲解Transformer模型的理论和实践。😲本文将从Attention机制的原理出发,详细解析Transformer模型的核心组件——编码器(Encoder)的结构与工作流程。我们将重点探讨自注意力机制(Self-Attention)和多头注意力机制(Multi-Head Attention)的设计思想,以及它们在序列数据处理中的作用。原创 2025-01-22 02:57:43 · 1096 阅读 · 0 评论 -
Transformer详解:Attention机制原理
Hello,大家好,我是GISerLiu😁,一名热爱AI技术的GIS开发者,本系列文章是作者参加DataWhale2025年1月份学习赛,旨在讲解Transformer模型的理论和实践。😲本文将详细探讨Attention机制的原理、其在Transformer模型中的应用,以及Transformer模型如何通过自注意力机制(Self-Attention)和多头注意力机制(Multi-HeadAttention)来处理序列数据。原创 2025-01-19 02:58:25 · 1501 阅读 · 0 评论 -
Seq2Seq模型:从基础到注意力机制的演进
Hello,大家好,我是GISer Liu😁,一名热爱AI技术的GIS开发者,本系列文章是作者参加DataWhale2025年1月份学习赛,旨在讲解Transformer模型的理论和实践。😲Seq2Seq模型概述Encoder-Decoder架构详解注意力机制的引入与改进帮助读者快速理解如何Transformer模型原理;希望通过本文,大家能够掌握Seq2Seq模型的核心思想,了解注意力机制的重要性,并为后续学习Transformer模型打下坚实的基础。原创 2025-01-16 02:50:33 · 1069 阅读 · 0 评论 -
DataWhale冬令营-定制地理信息提取大模型(数据集构建与设计方案)
Hello,大家好!我是GISer Liu😁,一名热爱AI技术的GIS开发者。AI-MapBook是一个作者前段时间结合了大语言模型(LLM)与地图技术的创新项目,旨在从文本中提取地理信息并生成相应的地图展示。该项目的核心目标是利用大模型的强大生成能力,结合本地部署的高效性,实现对地理信息的精准提取和格式化输出,从而为文本中的地理信息提供自动化的地图展示。原创 2024-12-16 01:43:48 · 1064 阅读 · 12 评论 -
DataWhale冬令营-定制个人专属大模型(数据集构建源码思路分享)
Hello,大家好!我是GISer Liu😁,一名热爱AI技术的GIS开发者。本系列是作者参加2024DataWhale冬令营的BaseLine学习文章,希望我的分享能对各位学习者有帮助。😲在本文中,作者将通过以下几个部分,帮助读者理解整个微调LLM的流程并且分享作者自制的数据集生产代码,下面是文章主要内容大纲;LLM微调名词解释个人专属大模型定制流程构建个人数据集模型训练与部署。原创 2024-12-10 03:00:10 · 1255 阅读 · 9 评论 -
深入FastAPI:表单和文件上传详解
FastAPI 是一个高性能的 Web 框架,广泛用于构建 API。在实际开发中,我们经常需要处理表单数据和文件上传。本文将深入探讨如何在 FastAPI 中处理表单和文件,并通过详细的代码示例和解释,帮助读者由浅入深地理解这些概念。原创 2024-11-23 02:35:31 · 1780 阅读 · 0 评论 -
深入FastAPI:路径参数、查询参数及其检校
FastAPI 是一个现代、快速(高性能)的 Web 框架,基于 Python 3.7+ 标准类型提示。它特别适合构建 API,因为它支持异步编程、自动生成文档,并且具有强大的数据验证功能。本文将深入探讨 FastAPI 中的路径参数、查询参数及其检校机制,并通过实际代码示例帮助你更好地理解和应用这些概念。FastAPI 是一个基于 Python 的 Web 框架,旨在提供高性能、易于使用和快速开发的特性。它利用 Python 的类型提示来进行数据验证和自动生成文档,使得开发 API 变得更加简单和高效。原创 2024-11-13 02:52:42 · 1007 阅读 · 0 评论 -
大模型生图安全疫苗注入——进阶解决方案与系统优化(DataWhale组队学习)
在之前的博客中,我们展示了如何利用**Qwen模型**进行文本改写,并通过多轮次对话优化模型的输出结果。然而,由于大语言模型生成结果的多样性和不确定性,确保生成文本的**安全性和语义一致性**仍然是一个挑战。 本篇博客将基于上一部分的代码实现,对其进行**扩展和深入探讨**;原创 2024-10-18 23:51:05 · 1510 阅读 · 0 评论 -
大模型生图安全疫苗注入赛题解析(DataWhale组队学习)
本文中,我们介绍了全球AI攻防挑战赛的背景和任务,并详细探讨了攻击与防御策略。我们补充了代码实现,包括Prompt诱导与绕过策略、批量优化与自动评估,以及模型防御机制设计。原创 2024-10-12 23:56:06 · 1670 阅读 · 0 评论 -
AI金融攻防赛:金融场景凭证篡改检测(DataWhale组队学习)
本次AI金融攻防挑战赛不仅让我们熟悉了金融场景下的AI模型应用,也让我们在图像检测和语义分割领域积累了宝贵的实践经验。通过这次比赛,我们了解了如何构建从数据预处理到模型训练、测试再到结果提交的完整流程。原创 2024-10-12 23:54:44 · 1735 阅读 · 3 评论 -
Mobile-Agent赛题分析和代码解读笔记(DataWhale AI夏令营)
你好,我是GISer Liu,一名热爱AI技术的GIS开发者,本文是DataWhale 2024 AI夏令营的最后一期——赛道,关于赛题分析和代码解读的学习文档总结;这边作者也会分享自己的思路;MobileAgent解析大模型智能体式LLM应用的未来,就如Andrej Karpathy大佬所云:如果一篇论文提出了不同的训练方法,我们内部的Slask上会嗤之以鼻,认为都是我们玩剩下的。但是当新的AI Agents论文出来的时候,我们会认真兴奋的讨论;AI Agent不仅会改变每个人与计算机交互方式。原创 2024-08-31 23:58:58 · 2155 阅读 · 0 评论 -
Mobile-Agent项目部署与学习总结(DataWhale AI夏令营)
你好,我是GISer Liu,一名热爱AI技术的GIS开发者,本文是DataWhale 2024 AI夏令营的最后一期——赛道,这是作者的学习文档,这里总结一下,和作者一起学习这个多模态大模型新项目吧😀;原创 2024-08-25 22:40:12 · 2419 阅读 · 1 评论 -
LLM微调(数据增强与模型自动打分)-以高考选择题生成模型为例(DataWhale AI夏令营)
你好,我是GISer Liu,一名热爱AI技术的GIS开发者,上一篇文章中,作者通过QA对生成模型介绍了详细介绍了LLM微调数据的处理过程;而在本文中,作者将深入模型数据集增强以及模型自动打分功能;原创 2024-08-17 21:50:51 · 1224 阅读 · 0 评论 -
LLM微调(精讲)-以高考选择题生成模型为例(DataWhale AI夏令营)
你好,我是GISer Liu😁,一名热爱AI技术的GIS开发者,上一篇文章中,作者介绍了基于讯飞开放平台进行大模型微调的完整流程;而在本文中,作者将对大模型微调的数据准备部分进行深入;在上一篇文章中,作者详细介绍了如何利用讯飞开放平台进行大模型微调的完整流程。本文将深入探讨微调过程中的数据准备阶段,重点阐述数据处理和微调理论,旨在帮助读者更深入地理解微调的本质,并鼓励大家基于此理论再次尝试微调模型,以优化模型的输出结果。数据处理思路。原创 2024-08-13 22:54:04 · 1824 阅读 · 0 评论 -
基于Spark AI的进行模型微调(DataWhale AI夏令营)
Hello,大家好,我是GISer Liu😁,一名热爱AI技术的GIS开发者,本文参与活动是2024 DataWhale AI夏令营第四期大模型微调希望我的文章能帮助到你;😲在本文中,作者将详细讲解如何从零开始构建一个语文和英语高考选择题数据集,并且基于讯飞开发平台进行LLM微调训练一个模型,最后通过调用API进行测试。数据集准备:包括数据的读取、预处理、问题提取与答案提取。模型训练:如何利用现有的语言模型,进行定制化的模型训练。本地测试。原创 2024-08-11 23:59:30 · 684 阅读 · 0 评论 -
基于Llama Index构建RAG应用(Datawhale AI 夏令营)
我是GISer Liu😁,一名热爱AI技术的GIS开发者,本文参与活动是2024 DataWhale AI夏令营;😲Gradio、Streamlit和LlamaIndex介绍LlamaIndex 构建RAG应用LlamaIndex 结合 Streamlit 构建RAG Web应用这三个章节,冲LLM开发的理论基础知识开始学习,尝试软件框架的使用方法,最后通过RAG实践案例帮助读者入门本次AI夏令营的LLM应用开发;一起加油!!!😍😍😍原创 2024-07-18 19:04:26 · 1682 阅读 · 0 评论 -
开源RAG个人知识库项目开发分析
Hello,大家好,我是GISer Liu😁,一名热爱AI技术的GIS开发者,这个LLM开发基础阶段已经进入尾声了,本文中我们不介绍更多的理论与知识点,而是通过的分析开源项目的解决方案来帮助各位开发者理清自己开发的思路;在本文中作者将通过个人知识库助手进行学习:通过分析这个RAG应用的开发流程,思路以及业务代码;帮助读者能学会如何规划自己的LLM的应用开发;在当今数据量迅速增长的时代,高效管理和检索信息已成为关键技能。为了应对这一挑战以及LLM技术的发展,该项目应运而生,旨在构建一个基于。原创 2024-07-01 02:57:51 · 2382 阅读 · 0 评论 -
LLM应用开发-RAG系统评估与优化
Hello,大家好,我是GISer Liu😁,一名热爱AI技术的GIS开发者,在上一篇文章中,我们学习了如何基于LangChain构建RAG应用,并且通过Streamlit将这个RAG应用部署到了阿里云服务器;😀LLM应用评估策略生成内容评估优化检索内容评估优化三部分,帮助读者学习如何对自己开发的RAG应用进行评估,并通过科学的方法优化结果,提高应用性能;原创 2024-06-29 02:56:54 · 1349 阅读 · 4 评论 -
基于LangChain构建RAG应用
Hello,大家好,我是GISer Liu😁,一名热爱AI技术的GIS开发者,上一篇文章中我们详细介绍了RAG的核心思想以及搭建向量数据库的完整过程;😲将LLM接入LangChain:选择LLM,然后在LangChain中使用;构建检索问答链:使用语法构建RAG问答链部署知识库助手:使用streamlit部署项目;帮助读者快速构建RAG应用并部署在阿里云服务器上;Streamlit是一个开源的 Python 库,它使得数据科学家和开发者能够快速构建和共享美观的机器学习模型和数据应用程序。使用。原创 2024-06-27 02:56:55 · 1851 阅读 · 13 评论 -
基于LangChain搭建个人知识库
😺Hello,大家好,我是GISer Liu,😀😀 一名热爱AI技术的GIS开发者;在上一篇文章中,我们学习了LLM API的申请、应用以及提示词工程;在本文中,作者将介绍如何从零开始构建个人知识库🎉🤓;词向量和向量数据库概念申请Embedding Model API使用LangChain工具对文本数据进行处理基于文本数据搭建向量数据库并进行测试向量数据库是专门用于存储、索引和检索高维向量数据的数据库。它广泛应用于推荐系统、图像识别和语义搜索等领域。与传统的关系型数据库不同,向量数据库能够。原创 2024-06-25 02:51:11 · 1369 阅读 · 10 评论 -
一文读懂LLM API应用开发基础(万字长文)
Hello,大家好,我是GISer Liu😁,一名热爱AI技术的GIS开发者,上一篇文章中我们详细介绍了LLM开发的基本概念,包括LLM的模型、特点能力以及应用;😲LLM名词解释API申请Python代码调用测试提示词工程Prompt Engine帮助读者快速理解如何入门LLM开发,并将LLM与我们的传统开发的工作业务联系起来;本文中,作者详细介绍了LLM 开发的入门知识;名词解释:了解 LLM 的基础名词解释可以帮助读者更好地理解 LLM 开发中的思想过程,避免产生歧义。API申请。原创 2024-06-23 02:24:21 · 2618 阅读 · 3 评论 -
一文读懂LLM API应用开发基础(万字长文)
Hello,大家好,我是GISer Liu😁,一名热爱AI技术的GIS开发者,上一篇文章中我们详细介绍了LLM开发的基本概念,包括LLM的模型、特点能力以及应用;😲LLM名词解释API申请Python代码调用测试提示词工程Prompt Engine帮助读者快速理解如何入门LLM开发,并将LLM与我们的传统开发的工作业务联系起来;本文中,作者详细介绍了LLM 开发的入门知识;名词解释:了解 LLM 的基础名词解释可以帮助读者更好地理解 LLM 开发中的思想过程,避免产生歧义。API申请。原创 2024-06-23 01:58:06 · 2360 阅读 · 0 评论 -
LLM大模型开发-基础概论
大家好,我是GISer Liu,好久不见,工作之余,我又来参加DataWhale举办的每月学习赛了;期待这个系列文章能帮助各位读者快速入门LLM开发,希望大家喜欢;Github链接已放在文末;在这篇文章中,作者将为各位读者介绍大语言模型(LLM)的应用开发基础。首先,我们将了解什么是LLM,以及其原理和发展历程。接下来,我们将探讨国内外的闭源和开源LLM,了解其特点、功能及应用。最后,我们还将讨论LLM的功能和应用场景。通过生动的案例和类比的方式,作者希望代理各位读者更好地理解LLM。原创 2024-06-19 01:33:39 · 1117 阅读 · 4 评论 -
基于MetaGPT构建LLM多智能体
你好,我是GISer Liu,在上一篇文章中,我们用了两万多字详细拆解了单个Agent的组成,并通过Github Trending订阅智能体理解MetaGPT框架的订阅模块如何解决应用问题,但是对于复杂,并行的任务,单个智能体是不能胜任;今天我们将进入多智能体开发的学习阶段;一起期待吧😀MetaGPT中Environment的设计思想;构建简单师生对话多Agent框架;MetaGPT中Team的设计思想;构建 多Agent 开发团队;构建 多Agent 辩论团队;原创 2024-05-23 02:25:34 · 3076 阅读 · 29 评论 -
基于MetaGPT构建LLM 订阅 Agent
在本文中,作者选择了通过爬取GitHub Trending页面来满足需求,并详细分析了页面结构,构建了爬虫Action和页面分析总结Action。通过再次爬取`readme`文件内容,作者获得了多篇文章的总结分析。最后,我们在前面的基础上,详细介绍了`MetaGPT`订阅模块的触发器Trigger和回调函数callback的使用。原创 2024-05-19 21:13:51 · 1359 阅读 · 23 评论 -
基于MetaGPT构建单智能体
在之前的文章中,我们详细地描述了Agent的概念和组成,在代码案例中体验了Agent的记忆、工具、规划决策模块,并通过几个Agent框架来加强读者对Agent开发设计与应用的理解,接下来我们就要进入智能体Agent的实际开发中,请各位和我一起运行环境,开始Coding!!!😋😋代码已开源,文末有链接自取;本文中,我们将专注于单智能体开发,使用框架为MetaGPT。MetaGPT是一个基于Python的智能体开发框架,它提供了一系列的工具和方法,可以帮助开发者更加高效地进行智能体的开发。原创 2024-05-17 11:19:02 · 1523 阅读 · 15 评论 -
LLM Agent智能体综述(万字长文)
🏆🏆🏆在上一篇文章中,我们介绍了如何部署MetaGPT到本地,获取OpenAI API Key并配置其开发环境,并通过一个开发小组的多Agent案例感受了智能体的强大,在本文中,我们将对AI Agent的理论体系做一个综述,并且介绍一些最新的多智能体框架;希望各位读者喜欢!AI Agent是一个以大语言模型(LLM)为核心的程序,旨在实现用户设定的一些目标或任务。LLM获取反馈信息,并选择使用预设或新建的工具(函数),以迭代运行方式完成任务。原创 2024-05-14 21:25:49 · 1950 阅读 · 0 评论 -
LLM Agent智能体综述(超详细)
🏆🏆🏆在上一篇文章中,我们介绍了如何部署MetaGPT到本地,获取OpenAI API Key并配置其开发环境,并通过一个开发小组的多Agent案例感受了智能体的强大,在本文中,我们将对AI Agent的理论体系做一个综述,并且介绍一些最新的多智能体框架;希望各位读者喜欢!AI Agent是一个以大语言模型(LLM)为核心的程序,旨在实现用户设定的一些目标或任务。LLM获取反馈信息,并选择使用预设或新建的工具(函数),以迭代运行方式完成任务。原创 2024-05-14 20:52:10 · 6886 阅读 · 2 评论 -
基于MetaGPT的LLM Agent学习实战(一)
我最近一直在做基于AI Agent 的个人项目, 因为工作加班较多,设计思考时间不足,这里借着Datawhale的开源学习课程《MetaGPT智能体理论与实战》课程,来完善自己的思路,抛砖引玉,和各位开发者一起学习!获取MetaGPT部署到本地环境配置MetaGPT申请ChatGPT API Key基于ChatGPT API构建调用代码运行MetaGPT案例代码进行测试今天学习的内容较为简单,我会尽量以简洁的语言详细描述清楚这个流程,带着读者一起学习Agent开发;原创 2024-05-13 02:49:57 · 1684 阅读 · 2 评论