#3-1
import numpy as np
import matplotlib.pyplot as plt
data=np.arange(0,1.1,0.01)
plt.title("lines")
plt.xlabel('x')
plt.ylabel('y')
plt.xlim((0,1))
plt.ylim((0,1))
plt.xticks([0,0.2,0.4,0.6,0.8,1])
plt.yticks([0,0.2,0.4,0.6,0.8,1])
plt.plot(data,data**4)
plt.plot(data,data**2)
plt.legend(['y=x^4','y=x^2'])
plt.show()
#3-2
rad=np.arange(0,np.pi*2,0.01)
pl=plt.figure(figsize=(8,6),dpi=80)
ax1=pl.add_subplot(2,1,1)
plt.title("lines")
plt.xlabel('x')
plt.ylabel('y')
plt.xlim((0,1))
plt.ylim((0,1))
plt.xticks([0,0.2,0.4,0.6,0.8,1])
plt.yticks([0,0.2,0.4,0.6,0.8,1])
plt.plot(rad,rad**4)
plt.plot(rad,rad**2)
plt.legend(['y=x^4','y=x^2'])
ax2=pl.add_subplot(2,1,2)
plt.title("sin/cos")
plt.xlabel('rad')
plt.ylabel('value')
plt.xlim((0,np.pi*2))
plt.ylim((-1,1))
plt.xticks([0,np.pi/2,np.pi,np.pi*1.5,np.pi*2])
plt.yticks([-1,-0.5,0,0.5,1])
plt.plot(rad,np.sin(rad))
plt.plot(rad,np.cos(rad))
plt.legend(['sin','cos'])
plt.show()
#3-3
plt.rcParams['lines.linestyle']='-.'
plt.rcParams['lines.linewidth']=3
x=np.linspace(0,4*np.pi)
y=np.sin(x)
plt.plot(x,y,label="$sin(x)$")
plt.title('sin曲线')
plt.show()
#3-4
plt.rcParams['font.sans-serif']='SimHei'
plt.rcParams['axes.unicode_minus']=False
plt.rcParams['lines.linestyle']='-.'
plt.rcParams['lines.linewidth']=3
x=np.linspace(0,4*np.pi)
y=np.sin(x)
plt.plot(x,y,label="$sin(x)$")
plt.title('sin曲线')
plt.show()
#3-5
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']='SimHei'
plt.rcParams['axes.unicode_minus']=False
data=np.load("C:\\Users\\Dell\\Desktop\\国民经济核算季度数据.npz")
name=data['columns']
values=data['values']
plt.figure(figsize=(8,7))
plt.scatter(values[:,0],values[:,2],marker='o')
plt.xlabel("年份")
plt.ylabel("生产总值")
plt.ylim((0,225000))
plt.xticks(range(0,70,4),values[range(0,70,4),1],rotation=45)
plt.title("2000-2017年各季度国民生产总值散点图")
plt.show()
#3-6
plt.figure(figsize=(8,7))
plt.scatter(values[:,0],values[:,3],marker='o',c='red')
plt.scatter(values[:,0],values[:,4],marker='+',c='yellow')
plt.scatter(values[:,0],values[:,5],marker='v',c='blue')
plt.xlabel("年份")
plt.ylabel("生产总值")
plt.xticks(range(0,70,4),values[range(0,70,4),1],rotation=45)
plt.title("2000-2017年各季度国民生产总值散点图")
plt.legend(['第一产业','第二产业','第三产业'])
plt.show()
#3-7
plt.figure(figsize=(8,7))
plt.plot(values[:,0],values[:,2],color='r',linestyle='--')
plt.xlabel("年份")
plt.ylabel("生产总值")
plt.ylim((0,225000))
plt.xticks(range(0,70,4),values[range(0,70,4),1],rotation=45)
plt.title("2000-2017年各季度国民生产总值折线图")
plt.show()
#3-8
plt.figure(figsize=(8,7))
plt.plot(values[:,0],values[:,2],color='r',linestyle='--',marker='o')
plt.xlabel("年份")
plt.ylabel("生产总值")
plt.ylim((0,225000))
plt.xticks(range(0,70,4),values[range(0,70,4),1],rotation=45)
plt.title("2000-2017年各季度国民生产总值折线图")
plt.show()
#3-9
plt.figure(figsize=(8,7))
plt.plot(values[:,0],values[:,3],'bs-',\
values[:,0],values[:,4],'rs-.',\
values[:,0],values[:,5],'yo--')
plt.xlabel("年份")
plt.ylabel("生产总值")
plt.xticks(range(0,70,4),values[range(0,70,4),1],rotation=45)
plt.title("2000-2017年各季度国民生产总值折线图")
plt.legend(['第一产业','第二产业','第三产业'])
plt.show()
#3-10
pl=plt.figure(figsize=(8,7))
ax1=pl.add_subplot(2,1,1)
plt.scatter(values[:,0],values[:,3],marker='o',c='red')
plt.scatter(values[:,0],values[:,4],marker='+',c='yellow')
plt.scatter(values[:,0],values[:,5],marker='v',c='blue')
plt.ylabel("生产总值")
plt.title("2000-2017年各产业与行业各季度国民生产总值散点图")
plt.legend(['第一产业','第二产业','第三产业'])
ax2=pl.add_subplot(2,1,2)
plt.scatter(values[:,0],values[:,6],marker='o',c='r')
plt.scatter(values[:,0],values[:,7],marker='+',c='y')
plt.scatter(values[:,0],values[:,8],marker='v',c='b')
plt.scatter(values[:,0],values[:,9],marker='*',c='brown')
plt.scatter(values[:,0],values[:,10],marker='8',c='g')
plt.scatter(values[:,0],values[:,11],marker='p',c='c')
plt.scatter(values[:,0],values[:,12],marker='s',c='m')
plt.scatter(values[:,0],values[:,13],marker='d',c='k')
plt.scatter(values[:,0],values[:,14],marker='D',c='purple')
plt.xlabel("年份")
plt.ylabel("生产总值")
plt.xticks(range(0,70,4),values[range(0,70,4),1],rotation=45)
plt.legend(['农业','工业','建筑','批发','交通','餐饮','金融','房地产','其他'])
plt.show()
#3-11
pl=plt.figure(figsize=(8,7))
ax1=pl.add_subplot(2,1,1)
plt.plot(values[:,0],values[:,3],'bs-',\
values[:,0],values[:,4],'rs-.',\
values[:,0],values[:,5],'yo--')
plt.ylabel("生产总值")
plt.xticks(range(0,70,4),values[range(0,70,4),1],rotation=45)
plt.title("2000-2017年各产业与行业各季度国民生产总值散点图")
plt.legend(['第一产业','第二产业','第三产业'])
ax2=pl.add_subplot(2,1,2)
plt.plot(values[:,0],values[:,6],'r-',\
values[:,0],values[:,7],'b-.',\
values[:,0],values[:,8],'y--',\
values[:,0],values[:,9],'g:',\
values[:,0],values[:,10],'c-',\
values[:,0],values[:,11],'m-.',\
values[:,0],values[:,12],'k--',\
values[:,0],values[:,13],'r:',\
values[:,0],values[:,14],'b-')
plt.xlabel("年份")
plt.ylabel("生产总值")
plt.xticks(range(0,70,4),values[range(0,70,4),1],rotation=45)
plt.legend(['农业','工业','建筑','批发','交通','餐饮','金融','房地产','其他'])
plt.show()
#3-12
plt.figure(figsize=(8,7))
plt.bar(range(3),values[-1,3:6],width=0.5)
plt.xlabel("产业")
plt.ylabel("生产总值")
label=['第一产业','第二产业','第三产业']
plt.xticks(range(3),label)
plt.title("2017年第一季度各产业国民生产总值直方图")
plt.show()
#3-13
label=['第一产业','第二产业','第三产业']
plt.figure(figsize=(8,7))
plt.pie(values[-1,3:6],labels=label,explode=[0.01,0.01,0.01],autopct="%1.1f%%")
plt.title("2017年第一季度各产业国民生产总值占比饼图")
plt.show()
#3-14
label=['第一产业','第二产业','第三产业']
plt.figure(figsize=(8,7))
gdp=(list(values[:,3]),list(values[:,4]),list(values[:,5]))
plt.boxplot(gdp,notch=True,labels=label,meanline=True)
plt.title("2000-2017年各产业国民生产总值箱线图")
plt.show()
#3-15
label1=['第一产业','第二产业','第三产业']
label2=['农业','工业','建筑','批发','交通','餐饮','金融','房地产','其他']
pl=plt.figure(figsize=(8,7))
ax1=pl.add_subplot(2,2,1)
plt.bar(range(3),values[0,3:6],width=0.6)
plt.xlabel("产业")
plt.ylabel("生产总值")
plt.xticks(range(3),label1)
plt.title("2000年第一季度各产业国民生产总值直方图")
ax2=pl.add_subplot(2,2,2)
plt.bar(range(3),values[-1,3:6],width=0.6)
plt.xlabel("产业")
plt.ylabel("生产总值")
plt.xticks(range(3),label1)
plt.title("2017年第一季度各产业国民生产总值直方图")
ax3=pl.add_subplot(2,2,3)
plt.bar(range(9),values[0,6:],width=0.6)
plt.xlabel("行业")
plt.ylabel("生产总值")
plt.xticks(range(9),label2)
plt.title("2000年第一季度各产业国民生产总值行业构成分布直方图")
ax4=pl.add_subplot(2,2,4)
plt.bar(range(9),values[-1,6:],width=0.6)
plt.xlabel("行业")
plt.ylabel("生产总值")
plt.xticks(range(9),label2)
plt.title("2017年第一季度各产业国民生产总值行业构成分布直方图")
plt.show()
#3-16
label1=['第一产业','第二产业','第三产业']
label2=['农业','工业','建筑','批发','交通','餐饮','金融','房地产','其他']
pl=plt.figure(figsize=(8,7))
ax1=pl.add_subplot(2,2,1)
plt.pie(values[0,3:6],explode=[0.01,0.01,0.01],\
labels=label1,autopct="%1.1f%%")
plt.title("2000年第一季度各产业国民生产总值饼图")
ax2=pl.add_subplot(2,2,2)
plt.pie(values[-1,3:6],explode=[0.01,0.01,0.01],\
labels=label1,autopct="%1.1f%%")
plt.title("2017年第一季度各产业国民生产总值饼图")
ax3=pl.add_subplot(2,2,3)
plt.pie(values[0,6:],explode=[0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01],\
labels=label2,autopct="%1.1f%%")
plt.title("2000年第一季度各产业国民生产总值行业构成分布饼图")
ax4=pl.add_subplot(2,2,4)
plt.pie(values[-1,6:],explode=[0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01,0.01],\
labels=label2,autopct="%1.1f%%")
plt.title("2017年第一季度各产业国民生产总值行业构成分布饼图")
plt.show()
#3-17
label1=['第一产业','第二产业','第三产业']
label2=['农业','工业','建筑','批发','交通','餐饮','金融','房地产','其他']
pl=plt.figure(figsize=(8,7))
ax1=pl.add_subplot(2,1,1)
gdp1=(list(values[:,3]),list(values[:,4]),list(values[:,5]))
plt.boxplot(gdp1,notch=True,labels=label1,meanline=True)
plt.title("2000-2017年各产业国民生产总值箱线图")
plt.ylabel("生产总值")
ax2=pl.add_subplot(2,1,2)
gdp2=([list(values[:,i]) for i in range(6,15)])
plt.boxplot(gdp2,notch=True,labels=label2,meanline=True)
plt.title("2000-2017年各行业国民生产总值箱线图")
plt.xlabel("行业")
plt.ylabel("生产总值")
plt.show()
label1=['第一产业','第二产业','第三产业']
label2=['农业','工业','建筑','批发','交通','餐饮','金融','房地产','其他']
pl=plt.figure(figsize=(8,7))
ax1=pl.add_subplot(2,1,1)
plt.boxplot(values[:,3:6],notch=True,labels=label1,meanline=True)
plt.title("2000-2017年各产业国民生产总值箱线图")
plt.ylabel("生产总值")
ax2=pl.add_subplot(2,1,2)
plt.boxplot(values[:,6:],notch=True,labels=label2,meanline=True)
plt.title("2000-2017年各行业国民生产总值箱线图")
plt.xlabel("行业")
plt.ylabel("生产总值")
plt.show()
python--matplotlib箱线图折线图散点图直方图
最新推荐文章于 2024-05-20 22:28:51 发布
3168

被折叠的 条评论
为什么被折叠?



