1. 登录 / 注册kaggle
登录不会遇到啥问题;但注册的时候可能会遇到该问题Captcha must be filled out
- 安装插件
Header Editor
插件下载地址:
链接:https://pan.baidu.com/s/1Sk9I6vAHHv8vUc1e3wCYkg?pwd=6as6
提取码:6as6
2.将解压的文件Header Editor.crx
拖到谷歌的扩展程序中,得到下图所示
点击详情,找到扩展程序选项,点击之后出现下图
-
配置插件
在导出和导入选项中导入一开始下载的HE-GoogleRedirect.json
,即可结束。 -
回到注册界面,此时就可以进行谷歌的人机交互了,完成注册。
2. 使用kaggle
- 点击kaggle的
create
—》New Notebook
- 图片讲解
点击Add Data
,输入titanic
,选择箭头所指的
得到如下形式
在Input
下的gender_submission.csv
,就是我们需要提交给kaggle的模板样式。 - 使用决策树对
titanic
练习
则在代码区写入:
import pandas as pd
from sklearn.feature_extraction import DictVectorizer
from sklearn.tree import DecisionTreeClassifier
# 1、获取数据
path_train = "../input/titanic/train.csv"
path_test = "../input/titanic/test.csv"
titanic_train = pd.read_csv(path_train)
titanic_test = pd.read_csv(path_test)
# 筛选特征值和目标值
x_train = titanic_train[["Pclass", "Age", "Sex"]]
y_train = titanic_train["Survived"]
x_test = titanic_test[["Pclass", "Age", "Sex"]]
# 2、数据处理
# 1)缺失值处理
x_train["Age"].fillna(x_train["Age"].mean(), inplace=True)
x_test["Age"].fillna(x_test["Age"].mean(), inplace=True)
# 2) 转换成字典
x_train = x_train.to_dict(orient="records")
x_test = x_test.to_dict(orient="records")
# 4、字典特征抽取
transfer = DictVectorizer()
x_train = transfer.fit_transform(x_train)
x_test = transfer.transform(x_test)
# 决策树预估器
estimator = DecisionTreeClassifier(criterion="entropy", max_depth=8)
estimator.fit(x_train, y_train)
# 模型评估 得出预测值
y_predict = estimator.predict(x_test)
# 保存预测值
submission = pd.read_csv('../input/titanic/gender_submission.csv')
submission['Survived'] = y_predict
submission.to_csv('submission.csv', index=False)
运行代码
在下图得到submission.csv
文件
点击submission.csv
后面的三个小点,Download,下载到本地。然后回到kaggle首页,搜索titanic
点击下图所指的
点击Submit Predictions
将刚刚下载的submission.csv文件放进去,点击submit,提交。则可看到分数。
文章部分内容参考:https://blog.csdn.net/weixin_46713695/article/details/125474130