1.算法效率
算法效率分析分为两种:第一种是时间效率,第二种是空间效率。时间效率被称为时间复杂度,而空间效率被
称作空间复杂度。 时间复杂度主要衡量的是一个算法的运行速度。而空间复杂度主要衡量一个算法所需要的额
外空间,在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的
迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复
杂度。
2.时间复杂度
时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但
是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方
式。一个算法所花费的时间与其中语句的执行次数成正比例,
算法中的基本操作的执行次数,为算法的时间复
杂度。
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要
大概执行次数,那么这里我们使用大
O
的渐进表示法。
大
O
符号(
Big O notation
):是用于描述函数渐进行为的数学符号。
推导大
O
阶方法:
1
、用常数
1
取代运行时间中的所有加法常数。
2
、在修改后的运行次数函数中,只保留最高阶项。
3
、如果最高阶项存在且不是
1
,则去除与这个项目相乘的常数。得到的结果就是大
O
阶。
通过上面我们会发现大
O
的渐进表示法
去掉了那些对结果影响不大的项
,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数
(
上界
)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数
(
下界
)
例如:在一个长度为
N
数组中搜索一个数据
x
最好情况:
1
次找到
最坏情况:
N
次找到
平均情况:
N/2
次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为
O(N)
3.空间复杂度
空间复杂度是对一个算法在运行过程中
临时占用存储空间大小的量度
。空间复杂度不是程序占用了多少
bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复杂度
类似,也使用
大
O
渐进表示法。