大数据助力精准防疫分析报告
2020年,一场突如其来的疫情打乱了我们的生活节奏,甚至让我们的内心不安起来。但是有许多劳动者坚守在抗疫一线,甚至还有很多地区城市利用大数据手段助力精准防疫,接下来结合案例浅析一下如何利用大数据进行精准防疫。
案例一,宁波市前湾社区工作委员会疫情数据分析。
- 数据采集和预处理。由于该地区的特点是辖区内几乎全是外来返工人员,于是他们将采集的数据分为三类,A类是大年初二以来的密集排摸和登记的辖区现居住人员2万余人;B类数据则是公安、交通、通讯运营商等第三方单位提供的信息,包括感染或疑似感染人员活动位置地点等信息;C类数据是指在日常管控中采集的数据。
- 数据分析。他们主要利用的是分类分析的思想,首先利用第三方提供的感染者或疑似感染者数据,然后将这类人分为一类构建训练集,然后用A类数据当作测试集与它比对,找到可能的感染者或疑似感染者,然后逐一排查,找到感染人员并加入训练集,然后又用训练集去比对C类数据,找到疑似感染者;
- 数据可视化。经过上述分析可以得到一份疑似感染者名单,接下来就交给相关人员去进行监控和排查。
- 同时,监控得到的结果可以反馈给分析,比如某人连续14天没有体温异常等,然后动态调整数据集。
案例二,东北大学利用大数据精准防疫。 - 数据采集与预处理。数据来源是学校门口的通道式集装箱测温设备的人员体温信息数据,和师生每天测体温上报的体温数据。东北大学在楼馆入口全部设置扫码或刷卡进楼认证系统,这样来获取人员活动位置地点数据。经过数据变换,清洗和集成后,将每个人对应的数据信息存入数据库。
- 数据分析。通过聚类分析找到体温异常的人员及其轨迹。
- 数据可视化。将人员轨迹和体温数据进行时空数据可视化和动态文本时序信息可视化,从而更好判断高危区域和做出相应调整,如将数据中体温异常的人员加入可疑人员名单并同步到楼馆门口的认证系统,限制其进入。将可疑名单上的人逐一排查,找到感染者并确定其行踪,同时对行踪上的其他人员进行跟踪排查等。
案例三,支付宝健康码助力政府抗疫决策。 - 数据采集。在各个公共场所设立扫码器采集人员活动信息,并通过后台系统预处理数据然后存入数据仓库;
- 数据分析。通过聚类分析按人员活动轨迹将人员聚类,然后进行分类分析,先基于确诊人员的活动轨迹构建分类模型A,然后将聚类结果与模型A进行比对,预测疑似感染人员,并将其记录下来,这样就可以得到一份疑似感染人员名单;
- 数据可视化。人员活动轨迹可以通过时空数据可视化呈现出来,从中很容易看出感染人员活动轨迹和其他人重叠部分,从而划分高危区域,给相应区域负责人追踪疑似感染者提供了方便。
从上面几个案例可以看出,大数据助力防疫离不开数据采集,分析和可视化三个过程,而其中的关键在于数据分析,分析的质量决定了产生的效果。比如支付宝健康码刚上线时很多人反映他们的健康码无故变红导致他们出不了门,这主要与分析算法不够好有关,导致系统误判了他们的状态。
大数据助力疫情防控已经得到了广泛的应用,愿这项技术可以帮助我们更快地恢复正常生产生活秩序。