2020-09-10

大数据助力精准防疫分析报告
2020年,一场突如其来的疫情打乱了我们的生活节奏,甚至让我们的内心不安起来。但是有许多劳动者坚守在抗疫一线,甚至还有很多地区城市利用大数据手段助力精准防疫,接下来结合案例浅析一下如何利用大数据进行精准防疫。
案例一,宁波市前湾社区工作委员会疫情数据分析。

  1. 数据采集和预处理。由于该地区的特点是辖区内几乎全是外来返工人员,于是他们将采集的数据分为三类,A类是大年初二以来的密集排摸和登记的辖区现居住人员2万余人;B类数据则是公安、交通、通讯运营商等第三方单位提供的信息,包括感染或疑似感染人员活动位置地点等信息;C类数据是指在日常管控中采集的数据。
  2. 数据分析。他们主要利用的是分类分析的思想,首先利用第三方提供的感染者或疑似感染者数据,然后将这类人分为一类构建训练集,然后用A类数据当作测试集与它比对,找到可能的感染者或疑似感染者,然后逐一排查,找到感染人员并加入训练集,然后又用训练集去比对C类数据,找到疑似感染者;
  3. 数据可视化。经过上述分析可以得到一份疑似感染者名单,接下来就交给相关人员去进行监控和排查。
  4. 同时,监控得到的结果可以反馈给分析,比如某人连续14天没有体温异常等,然后动态调整数据集。
    案例二,东北大学利用大数据精准防疫。
  5. 数据采集与预处理。数据来源是学校门口的通道式集装箱测温设备的人员体温信息数据,和师生每天测体温上报的体温数据。东北大学在楼馆入口全部设置扫码或刷卡进楼认证系统,这样来获取人员活动位置地点数据。经过数据变换,清洗和集成后,将每个人对应的数据信息存入数据库。
  6. 数据分析。通过聚类分析找到体温异常的人员及其轨迹。
  7. 数据可视化。将人员轨迹和体温数据进行时空数据可视化和动态文本时序信息可视化,从而更好判断高危区域和做出相应调整,如将数据中体温异常的人员加入可疑人员名单并同步到楼馆门口的认证系统,限制其进入。将可疑名单上的人逐一排查,找到感染者并确定其行踪,同时对行踪上的其他人员进行跟踪排查等。
    案例三,支付宝健康码助力政府抗疫决策。
  8. 数据采集。在各个公共场所设立扫码器采集人员活动信息,并通过后台系统预处理数据然后存入数据仓库;
  9. 数据分析。通过聚类分析按人员活动轨迹将人员聚类,然后进行分类分析,先基于确诊人员的活动轨迹构建分类模型A,然后将聚类结果与模型A进行比对,预测疑似感染人员,并将其记录下来,这样就可以得到一份疑似感染人员名单;
  10. 数据可视化。人员活动轨迹可以通过时空数据可视化呈现出来,从中很容易看出感染人员活动轨迹和其他人重叠部分,从而划分高危区域,给相应区域负责人追踪疑似感染者提供了方便。
    从上面几个案例可以看出,大数据助力防疫离不开数据采集,分析和可视化三个过程,而其中的关键在于数据分析,分析的质量决定了产生的效果。比如支付宝健康码刚上线时很多人反映他们的健康码无故变红导致他们出不了门,这主要与分析算法不够好有关,导致系统误判了他们的状态。
    大数据助力疫情防控已经得到了广泛的应用,愿这项技术可以帮助我们更快地恢复正常生产生活秩序。
在探索智慧旅游的新纪元中,一个集科技、创新与服务于一体的整体解决方案正悄然改变着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新一代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验与管理模式。这一方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游中的智能导航、个性化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“一云多屏”的服务平台,让游客在旅游的全过程中都能享受到便捷、个性化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参与感和满意度,也让旅游变得更加智能化、趣味化。 此外,智慧旅游还为旅游企业和政府部门带来了前所未有的管理变革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销和个性化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划和精细管理,提高监管效率和质量。例如,通过实时监控和数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享与协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力和无限潜力,正引领着旅游业迈向一个更加智慧、便捷、高效的新时代。
内容概要:本文详细介绍了大模型的发展现状与未来趋势,尤其聚焦于DeepSeek这一创新应用。文章首先回顾了人工智能的定义、分类及其发展历程,指出从摩尔定律到知识密度提升的转变,强调了大模型知识密度的重要性。随后,文章深入探讨了DeepSeek的发展路径及其核心价值,包括其推理模型、思维链技术的应用及局限性。此外,文章展示了DeepSeek在多个行业的应用场景,如智能客服、医疗、金融等,并分析了DeepSeek如何赋能个人发展,具体体现在公文写作、文档处理、知识搜索、论文写作等方面。最后,文章展望了大模型的发展趋势,如通用大模型与垂域大模型的协同发展,以及本地部署小模型成为主流应用渠道的趋势。 适合人群:对人工智能和大模型技术感兴趣的从业者、研究人员及希望利用DeepSeek提升工作效率的个人用户。 使用场景及目标:①了解大模型技术的最新进展和发展趋势;②掌握DeepSeek在不同领域的具体应用场景和操作方法;③学习如何通过DeepSeek提升个人在公文写作、文档处理、知识搜索、论文写作等方面的工作效率;④探索大模型在特定行业的应用潜力,如医疗、金融等领域。 其他说明:本文不仅提供了理论知识,还结合实际案例,详细介绍了DeepSeek在各个场景下的应用方式,帮助读者更好地理解和应用大模型技术。同时,文章也指出了当前大模型技术面临的挑战,如模型的局限性和数据安全问题,鼓励读者关注技术的持续改进和发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值