【机器学习】似然性(likelihood)和概率(probability),似然性到底是什么,先验/后验/似然

本文介绍了机器学习中的核心概念——似然性,它与概率的区别在于,概率是在已知参数下预测观测结果,而似然性则是在已知观测结果下估计参数。通过先验概率、似然概率和后验概率的概念,帮助读者理解这一统计学原理。并以天气现象为例,解释了这三个概率的直观含义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

近期在学习机器学习的过程中,碰到一个名词——似然性,不太明白,故记录一下,以备查用,下面的解释是知乎上看到的,想看原文的同学请戳结尾。

正文

“似然性”(likelihood)和“概率”(probability)意思相近,都是指某种事件发生的可能性。在统计学中,似然性”和“概率”又有明确的区分,概率用于在已知一些参数的情况下,预测接下来的观测所得到的结果,而似然性则是用于在已知某些观测所得到的结果时,对有关事物的性质的参数进行估计。

下面介绍一个公式加深理解:
在这里插入图片描述

经常会有文章提到先验概率,后验概率及似然概率,他们的意思可以这么理解:
1)先验——根据若干年的统计(经验)或者气候(常识),某地方下雨的概率;
2)似然——下雨(果)的时候有乌云(因/证据/观察的数据)的概率,即已经有了果,对证据发生的可能性描述;
3)后验——根据天上有乌云(原因或者证据/观察数据),下雨(结果)的概率;

一般认为,在上述公式中,P(A),P(B)是先验概率,P(B|A)是似然概率,P(A|B) 是后验概率。

参考

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值