同余
定义:
如果整数a和整数b除以正整数m,则称 a ,b 摸 m 同余,记为 a ≡ b (mod m).
同余类与剩余类
同余类也称剩余类。
对于任意的a属于[ 0, m - 1 ],集合[ a + k * m](k属于整数)中的所有元素摸m同余
,余数都是a。这个集合[ a + k * m ]称为一个模m的同余类,简记为ā。
模m的同余类一定有 m 个,分别为[0],[1],[2],[3],……,[m-1]。这些同余类构成m的
完全剩余系。
1 ~ m 中与m互质的数代表的同余类共有φ(m)个,他们构成m的简化剩余系,列如,模
12的简化剩余系为[1],[5],[7],[11]。
简化剩余系过于模m乘法封闭。因为 若a,b(1<= a , b <=m)与m互质,那么 a * b也与m互质,那么可以得到 a * b mod m也与m互质,a * b mod m也属于m的简化剩余系。
费马小定理
定义:
若p是质数,则对于任意整数a,有 a ^ p ≡ a ( mod p).
证明(来自百度百科)
证明分为两步,第一步:去证明若 a,b,c为任意3个整数,m为正整数,且gcd(m,c)=1,那么 a * c ≡ b * c(mod m)时,a ≡ b (mod m).
成立。
证明:由 a * c ≡ b * c(mod m)可得 a * c - b * c ≡ 0 (mod m),因为gcd(c,m)=1,所以 a - b ≡ 0 (mod m),a ≡ b (mod m)
第二步:去证明设m为大于1的整数,gcd(b,m)=1(b为整数),如果a[1],a[2],a[3],……a[m]是m的一个完全剩余系,则b*a[1],b*a[2],……b*a[m]也构成模m的一个完全剩余系。
证明:
利用反证法,如果存在i和j使得 b * a[i] ≡ b * a[j](mod m),因此 a[i] ≡ a[j]
(mod m),根据完全剩余系的定义,这是不可能的,因此不存在i,j使得b * a[i] ≡
b * a[j](mod m),
因此b*a[1],b*a[2],……b*a[m]构成模m的一个完全剩余系。
结合以上两步:
构造素数p的完全剩余系 P={1,2,3,……,p-1}。
设一个整数为a,gcd(a,p)=1,由第二步可知:A的完全剩余系可为A={a,2a,3a,……,
(p-1)a}.
这也是p的一个完全剩余系,根据完全剩余系的性质:
1*2*3*……*(p-1)≡a*2a*3a*……*(p-1)a (mod p).
=> (p-1)! ≡ (p-1)! * a^(p-1) (mod p)
因为gcd((p-1)!,p)=1,所以 1 ≡ a ^ ( p - 1 ) ( mod p )
费马小定理成立。
道阻且长
自己选的路 跪着也要走完