一、优化问题
二、分类问题
三、评价问题
四、预测问题
需要掌握的内容如下(强调部分在建模过程中层次较高):
- 常规优化模型:线性规划,非线性规划,整数规划,多目标规划,动态规划
- 评价模型:层次分析法,模糊综合评价,熵值法,TOPSIS法,数据包络分析,灰色关联分析
- 预测模型:回归拟合,灰色预测,马尔可夫预测,时间序列分析
- 动态模型:微分方程模型,差分方程模型,元胞自动机,排队论,蒙特卡罗随机模拟
- 图论模型:最短路径,最小生成树,最小费用最大流,指派问题,旅行商问题统计
- 分析模型:分布检验,均值T检验,方差分析,协方差分析,相关分析,卡方检验,秩和检验,回归分析,Logistic回归, 聚类分析,判别分析,关联分析
- 现代智能算法:模拟退火,神经网络,遗传算法,蚁群算法,粒子群算法,支持向量机,决策树,随机森林