最短路径问题 题解

最短路径问题

题目

平面上有 n n n个点 ( N < = 100 ) (N <= 100 ) (N<=100),每个点的坐标均在-10000~10000之间。其中的一些点之间有连线。若有连线,则表示可从一个点到达另一个点,即两点间有通路,通路的距离为两点直线的距离。现在的任务是找出从一点到另一点之间的最短路径。


输入

共有 n + m + 3 n+m+3 n+m+3行,其中:
第一行为一个整数 n n n
第2行到第 n + 1 n+1 n+1行(共 n n n行),每行的两个整数 x x x y y y,描述一个点的坐标(以一个空格隔开)。
n + 2 n+2 n+2行为一个整数 m m m,表示图中的连线个数。
此后的 m m m行,每行描述一条连线,由两个整数 I , j I,j I,j组成,表示第 i i i个点和第 j j j个点之间有连线。
最后一行:两个整数 s s s t t t,分别表示源点和目标点。


输出

一个实数(保留两位小数),表示从 S S S T T T 的最短路径的长度。


样例

input
5
0 0
2 0
2 2
0 2
3 1
5
1 2
1 3
1 4
2 5
3 5
1 5

output
3.41


解题思路

第一种:Floyed算法
初始:
d i s dis dis数组付最大值
如果点 u u u和点 v v v相连, d i s [ u ] [ v ] = dis[u][v]= dis[u][v]=两点相连的距离

循环:
第一层:枚举断点
第二层:枚举起点
第三层:枚举终点
起点,断点和终点不一样,并且 d i s [ i ] [ j ] > d i s [ i ] [ k ] + d i s [ k ] [ j ] dis[i][j]>dis[i][k]+dis[k][j] dis[i][j]>dis[i][k]+dis[k][j]
d i s [ i ] [ j ] = d i s [ i ] [ k ] + d i s [ k ] [ j ] dis[i][j]=dis[i][k]+dis[k][j] dis[i][j]=dis[i][k]+dis[k][j]
( 适用于处理负边权 )


第二种:Dijkstra算法
初始:
d i s dis dis数组付最大值
如果点 u u u和点 v v v相连, d i s [ u ] [ v ] = dis[u][v]= dis[u][v]=两点相连的距离

找一个未走过的最短路径的点 v v v
更新与它相连的所有点的距离


第三种:Ford算法
初始:
d i s dis dis数组付最大值
起点 d i s [ s ] dis[s] dis[s]=0

用所有白点更新与之相连的点的最短路径
直到不进行松弛操作


代码

第一种:Floyed算法

#include<iostream>
#include<iomanip>

#include<cstdio>
#include<cmath>
using namespace std;
int n,m,x,y;
double d[120][120];
struct c{
	double x,y;
}a[120];
int main()
{
	memset(d,0x7f,sizeof(d));
	scanf("%d",&n);
	for (int i=1;i<=n;i++)
	    cin>>a[i].x>>a[i].y;
	scanf("%d",&m);
	for (int i=1;i<=m;i++)
	{
		cin>>x>>y;
		d[y][x]=d[x][y]=sqrt(pow(a[x].x-a[y].x,2)+pow(a[x].y-a[y].y,2));
	}
	cin>>x>>y;
	for (int k=1;k<=n;k++)
	    for (int i=1;i<=n;i++)
	        for (int j=1;j<=n;j++)
	            if (i!=k&&j!=k&&i!=j&&d[i][j]>d[i][k]+d[k][j])
	               d[i][j]=d[i][k]+d[k][j];
	cout<<setprecision(2)<<fixed<<d[x][y]<<endl;
	return 0;
}

第二种:Dijkstra算法

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
const double maxn=0x7fffffff;
double d[10020][10020],dis[120];
int p[120],n,m,x2,y2,x[120],y[120];
int main()
{
	memset(dis,0x7f*1.0,sizeof(dis));
	scanf("%d",&n);
	for (int i=1;i<=n;i++)
	    cin>>x[i]>>y[i];
	scanf("%d",&m);
	for (int i=1;i<=m;i++)
	{
		cin>>x2>>y2;
		d[y2][x2]=d[x2][y2]=sqrt(pow(abs(x[x2]-x[y2]),2)+pow(abs(y[x2]-y[y2]),2)); 
	}   
	cin>>x2>>y2;
	dis[x2]=0;
	for (int i=1;i<=n;i++)
	{
        int k;
        double mi=maxn;
        k=0;
	    for (int j=1;j<=n;j++)
	        if (p[j]==0&&mi>dis[j])
	        {
	        	k=j;
	        	mi=dis[j];
	        }
	    if(!k) break;
	    p[k]=1;
	    for (int j=1;j<=n;j++)
	        if (p[j]==0&&d[j][k]!=0)
	           dis[j]=min(dis[j],dis[k]+d[j][k]);
	}
	printf("%.2lf",dis[y2]); 
	return 0;
} 

第三种:Ford算法

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
int n,m,x2,y2;
int x[15000],y[15000],dx[15000],dy[15000];
double dis[15000],l[15000];
int main()
{
	memset(dis,0x7f*1.0,sizeof(dis));
	scanf("%d",&n);
	for (int i=1;i<=n;i++)
	    cin>>x[i]>>y[i];
	scanf("%d",&m);
	for (int i=1;i<=m;i++)
	{
		cin>>dx[i]>>dy[i];
		l[i]=sqrt((abs(x[dx[i]]-x[dy[i]]))*(abs(x[dx[i]]-x[dy[i]]))+(abs(y[dx[i]]-y[dy[i]]))*(abs(y[dx[i]]-y[dy[i]]))); 
	}   
	cin>>x2>>y2;
	dis[x2]=0;
	for (int i=1;i<n;i++)
	{
	    int p=0;
	    for (int j=1;j<=m;j++)
	    {
	    	if (dis[dx[j]]+l[j]<dis[dy[j]])
	    	{
	    		dis[dy[j]]=dis[dx[j]]+l[j];
	    		p=1;
	    	}
	    	if (dis[dy[j]]+l[j]<dis[dx[j]])
	    	{
	    		dis[dx[j]]=dis[dy[j]]+l[j];
	    		p=1;
	    	}
	    }
	    if (p==0) break;
	}
	printf("%.2lf",dis[y2]);
    return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值