【ybtoj 高效进阶 3.4】 【强连通分量】 最大半联通子图

该博客主要介绍了如何利用图论算法解决最大半联通子图和强连通分量的问题。通过深度优先搜索(DFS)实现Tarjan算法找出强连通分量,并使用动态规划(DP)方法找到最大半联通子图及其方案数。文章还给出了具体的C++代码实现,包括边的排序和去重策略,以及关键数据结构的设计。
摘要由CSDN通过智能技术生成

【ybtoj 高效进阶 3.4】 【强连通分量】 最大半联通子图

题目

在这里插入图片描述
在这里插入图片描述


解题思路

强连通分量肯定也是半联通子图
可以先跑一遍强连通分量
然后再跑一遍DP求出最大半联通子图和方案数
注意不能建重边,不然会重复累计方案数


代码

#include<algorithm>
#include<iostream>
#include<cstdio>
#include<queue>
using namespace std;
queue<int>q;
struct lzf{
	int x,to,next;
}f[2000100],f2[2000100];
long long cnt,ans[200010];
int n,m,t,z,x,y,maxn,mo,tot;
int sk[200010],ru[200010],ins[200010],low[200010];
int head[200010],head2[200010],dfn[200010],sum[200010],dis[200010];
void add(int x,int y)
{
	 f[++t].to=y;
	 f[t].x=x;
	 f[t].next=head[x];
	 head[x]=t;
}
void add2(int x,int y)
{
	 f2[++t].to=y;
	 f2[t].next=head2[x];
	 head2[x]=t;
}
bool cmp(lzf f,lzf y)
{
	 if (ins[f.x]!=ins[y.x])
	    return ins[f.x]<ins[y.x];
	    else return ins[f.to]<ins[y.to];
}
void tarjan(int x)
{
	 dfn[x]=low[x]=++tot;
	 sk[++t]=x;
	 for (int i=head[x];i;i=f[i].next)
	     if (!dfn[f[i].to])
	     {
	     	tarjan(f[i].to);
	     	low[x]=min(low[x],low[f[i].to]);
		 }
		 else if (!ins[f[i].to]) low[x]=min(low[x],low[f[i].to]);
	 if (dfn[x]==low[x])
	 {
	 	ins[x]=++z; 
	 	sum[z]++;   
	 	while (sk[t]!=x)
	 	{
	 		  sum[z]++;
	 		  ins[sk[t--]]=z;
		}
		t--;
	 }
}
int main()
{
	scanf("%d%d%d",&n,&m,&mo);
	for (int i=1;i<=m;i++)
	{
		scanf("%d%d",&x,&y);
		add(x,y);
	}
	t=0;
	for (int i=1;i<=n;i++)
	    if (!dfn[i]) tarjan(i);  //求出强连通分量
	sort(f+1,f+m+1,cmp);  //根据边的两点排序,去重
	t=0;
	for (int i=1;i<=m;i++)
	    if ((ins[f[i].x]!=ins[f[i].to])&&(ins[f[i].x]!=ins[f[i-1].x]||ins[f[i].to]!=ins[f[i-1].to]))
	       add2(ins[f[i].x],ins[f[i].to]),ru[ins[f[i].to]]++;  //避免建重边
	for (int i=1;i<=z;i++)
	{
		ans[i]=1;
		dis[i]=sum[i]; 
		maxn=max(dis[i],maxn);
		if (!ru[i]) q.push(i);
	}
	while (!q.empty())
	{
		  int k=q.front();
		  q.pop();
		  for (int j=head2[k];j;j=f2[j].next)
		  {
		      int l=f2[j].to;
		      ru[l]--;
		      if (dis[l]<dis[k]+sum[l])
		      {
		      	  dis[l]=dis[k]+sum[l];
				  maxn=max(maxn,dis[l]); 
		      	  ans[l]=ans[k];
			  }
			  else if (dis[l]==dis[k]+sum[l])
			          ans[l]=(ans[l]+ans[k])%mo;
			  if (!ru[l]) q.push(l);
		  } //求出最大边权和以及方案数
	}
	for (int i=1;i<=z;i++)
	    if (dis[i]==maxn) cnt=(cnt+ans[i])%mo;  //累计最大边权和的方案数
	printf("%d\n%lld",maxn,cnt);
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值