下面有关JVM内存,说法错误的是?
A 程序计数器是一个比较小的内存区域,用于指示当前线程所执行的字节码执行到了第几行,是线程隔离的B Java方法执行内存模型,用于存储局部变量,操作数栈,动态链接,方法出口等信息,是线程隔离的C 方法区用于存储JVM加载的类信息、常量、静态变量、即时编译器编译后的代码等数据,是线程隔离的D 原则上讲,所有的对象都在堆区上分配内存,是线程之间共享的
正确答案:
C
输入流将数据从文件,标准输入或其他外部输入设备中加载道内存,在 java 中其对应于抽象类()及其子类。A java.io.InputStreamB java.io.OutputStreamC java.os.InputStreamD java.os.OutputStream
正确答案:
A
()仅包含方法定义和常量值。A 接口B 变量C 单元D 成员
正确答案:
A
public interface IService {String NAME="default";}默认类型等价表示是哪一项:A public String NAME="default";B public static String NAME="default";C public static final String NAME="default";D private String NAME="default";
正确答案:C
接口中的成员包括:全局常量和抽象方法。接口中的成员都有固定的修饰符, 成员变量:public static final 成员方法:public abstract 接口中的成员的访问权限都是公共的,接口中可以隐藏不写这些固定的修饰符。接口不可以实例化,只有子类重写了接口中的所有方法后,子类才可以实例化,否则子类还是一个抽象类。子类重写方法的访问权限都是public的。
【参数解析】
在命令行输入如下命令:
xcopy /s c:\ d:\,
各个参数如下:
参数1:命令字xcopy
参数2:字符串/s
参数3:字符串c:\
参数4: 字符串d:\
请编写一个参数解析程序,实现将命令行各个参数解析出来。
解析规则:
1.参数分隔符为空格
2.对于用“”包含起来的参数,如果中间有空格,不能解析为多个参数。比如在命令行输入xcopy /s “C:\program files” “d:\”时,参数仍然是4个,第3个参数
应该是字符串C:\program files,而不是C:\program,注意输出参数时,需要将“”去掉,引号不存在嵌套情况。
3.参数不定长
4.输入由用例保证,不会出现不符合要求的输入
import java.util.Scanner;
/**
* Created by JiaLe on 2021/4/26 14:31
*/
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
String str = scanner.nextLine();
StringBuilder sb = new StringBuilder();
int count = 0;
int cnum = 0;
for (int i = 0; i < str.length(); i++) {
char c = str.charAt(i);
if(c == '\"') {
cnum++;
continue;
}
if(c != ' ') {
sb.append(c);
} else if(cnum % 2 == 0) {
count++;
sb.append('\n');
} else {
sb.append(' ');
}
}
System.out.println(++count);
System.out.println(sb);
}
}
【跳石板】小易来到了一条石板路前,每块石板上从1挨着编号为:1、2、3.......
这条石板路要根据特殊的规则才能前进:对于小易当前所在的编号为K的 石板,小易单次只能往前跳K的一个约数(不含1和K)步,即跳到K+X(X为K的一个非1和本身的约数)的位置。 小易当前处在编号为N的石板,他想跳到编号恰好为M的石板去,小易想知道最少需要跳跃几次可以到达。
例如:
N = 4,M = 24:
4->6->8->12->18->24
于是小易最少需要跳跃5次,就可以从4号石板跳到24号石板
import java.util.Scanner;
/**
* Created by JiaLe on 2021/4/26 15:00
*/
public class Main1 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int m = scanner.nextInt();
if(n == m) {
System.out.println(0);
return;
}
int[] dp = new int[m + 1];
for (int i = 0; i <= m; i++) {
dp[i] = Integer.MAX_VALUE;
}
dp[n] = 0;
for(int i = n; i < m; i++) {
if(dp[i] == Integer.MAX_VALUE) {
continue;
}
for(int j = 2; j <= Math.sqrt(i); j++) {
if(i % j == 0) {
if(i + j <= m) {
dp[i + j] = Math.min(dp[i + j], dp[i] + 1);
}
if(i + (i / j) <= m) {
dp[i + (i / j)] = Math.min(dp[i + (i / j)], dp[i] + 1);
}
}
}
}
if(dp[m] == Integer.MAX_VALUE) {
System.out.println(-1);
} else {
System.out.println(dp[m]);
}
}
}