一种有向完全图的欧拉回路构造方法

问题:

构造出一条k个节点的有向完全图的欧拉回路。结点编号为1,2,3…k。(k>1)

定义:

给定无孤立结点的图G,若存在一条路,经过图中每边一次且仅一次,该条路称为欧拉路;若存在一条回路,经过图中每边一次且仅一次,改回路称为欧拉回路。

具有欧拉回路的图称作欧拉图。

相关定理及推论:

1.无向图G具有一条欧拉路,当且仅当G是连通的,且有零个或两个奇数度结点。

2.无向图G具有一条欧拉回路,当且仅当G是连通的,并且所有结点的度数全为偶数。

3.有向图G具有一条单向欧拉回路,当且仅当G是连通的,且每个节点入度等于出度。

4.有向图G具有一条欧拉路,当且仅当G是连通的,而且除两个结点外,每个结点的入度等于出度,这两个结点中,一个结点的入度比出度大1,另一个结点的入度比出度小1。

构造方法:

由定理3可得:有向完全图必然存在欧拉回路。

对于k个结点的有向完全图,可以从1号结点出发走到k号结点,

然后遍历2-(k-1)号结点,每次从k号结点走到该结点,然后再返回k号结点。

最后从k号结点出发走到1号结点。

剩下的未经过的边恰好就是k-1个节点的有向完全图,递归执行该过程即可。

void getou(vector<int>&q,int k)///获取k个节点的有向完全图的欧拉回路,默认起始点为1,如果有自环加上注释即可。
{
    if(k==1)
    {
        //q.push_back(1);
        return ;
    }
    q.push_back(k);
    for(int i=2;i<k;i++)
    {
        q.push_back(i);
        q.push_back(k);
    }
    //q.push_back(k);
    q.push_back(1);
    getou(q,k-1);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值