【数据结构与算法】->数据结构->堆(上)->详解堆&堆排序

Ⅰ 前言

在前面的文章里,我讲了树、二叉树以及二叉树的特殊形式。这篇文章,我们再来看看另外一种特殊的树——堆(Heap)

堆这种数据结构应用的非常多,最经典的莫过于堆排序了。接下来我们就从堆的原理出发,弄清楚堆到底是什么,怎么实现,以及基于此的堆排序的实现。

【数据结构与算法】->数据结构->树与二叉树

Ⅱ 定义

前面我们已经说到了,堆是一种特殊的树。现在我们来看看,到底什么样的树才是堆。堆有两个基本要求:

  • 堆是一个完全二叉树;
  • 堆中每一个节点的值都必须大于等于(或小于等于)其子树中每个节点的值。

第一点,我在之前的二叉树的文章中已经讲解过完全二叉树,它有一个基本的要求就是,除了最后一层,其他层的节点个数都是满的,最后一层的节点都靠左排列。

第二点,堆中的每个节点的值必须大于等于(或小于等于)其子树中每个节点的值。实际上,我们还可以换一个说法,堆中的每个节点的值都大于等于(或小于等于)其左右子节点的值。

对于每个节点的值都大于等于子树中每个节点值的堆,我们叫做 大顶堆

对于每个节点的值都小于等于子树中每个节点值的堆,我们叫做 小顶堆

在这里插入图片描述
如上图,其中第一个和第二个是大顶堆,第三个是小顶堆,第四个不是堆,因为它不是完全二叉树。从图中可以看出,对于同一组数据,我们可以构建多种不同形态的堆。

Ⅲ 堆的实现

要实现一个堆,我们首先要明确,堆支持的操作以及堆的存储结构

A. 堆的存储结构

在讲完全二叉树的时候,我们知道,完全二叉树比较适合用数组来存储。用数组存储完全二叉树是非常节省空间的,我们不需要存储左右子节点的指针,单纯地通过数组的下标,就可以找到一个节点的父节点和左右子节点。

下面是一个用数组存储堆的例子👇

在这里插入图片描述
从图中我们可以看到,数组中下标为 i 的节点的左右节点,就是下标为 i * 2 的节点;右子节点就是下标为 i * 2 + 1 的节点;父节点就是下标为 i / 2 的节点。

知道了如何存储堆,接下来我们就来看看堆的两个核心操作,分别是往堆中插入一个元素和删除堆顶元素,下面我都用大顶堆来讲解。

B. 堆支持的操作

① 往堆中插入一个元素

往堆中插入一个元素后,肯定还是要满足堆的两个基本要求的。

比如下面这张图,如果我们把新插入的元素放到堆的最后,就不符合堆的两个特性了。所以我们需要对它进行调整,让其重新满足堆的特性,这个过程我们叫做 堆化(heapify)

在这里插入图片描述

堆化有两种,自上而下和自下而上。我们先看自下而上的堆化方法。

堆化其实很简单,就是顺着节点所在的路径,向上或者向下,对比,然后交换。

下面我用一张堆化的过程分解图来说明这个过程。我们可以让新插入的节点与父节点对比大小。如果不满足子节点小于等于父节点的大小关系,我们就互换两个节点,然后一直重复这个过程,直到父子节点之间满足我们需要的大小关系。

在这里插入图片描述
按照这个过程,我们来写代码。

package com.tyz.about_heap.core;

public class Heap {
	private int[] arr; 	//存放堆的数组
	private int size;	//堆可以存储的最大数据个数
	private int count;	//堆中已经存储的数据个数

	public Heap(int capacity) {
		this.arr = new int[capacity + 1];
		this.size = capacity;
		this.count = 0;
	}
	
	private void swap(int[] arr, int indexOne, int indexTwo) {
		int temp = arr[indexOne];
		arr[indexOne] = arr[indexTwo];
		arr[indexTwo] = temp;
	}
	
	public void insert(int data) {
		if (this.count >= size) { //堆满了
			return;
		}
		this.count++;
		this.arr[count] = data;
		
		int i = this.count;
		while (i/2 > 0 && arr[i] > arr[i/2]) {
			swap(arr, i, i/2); //交换下标为i和下标为i/2两个元素的值
			i = i/2;
		}
	}

}

② 删除堆顶元素

假设我们构造的是大顶堆,堆顶元素就是最大的元素。当我们删除堆顶元素之后,就需要把第二大的元素放到堆顶,那第二大元素肯定会出现在左右子节点中。然后我们再迭代地删除第二大节点,以此类推,直到叶子节点被删除。

我给一个图例说明这个过程👇

在这里插入图片描述
可以看出来这个方法是有问题的,因为到最后这个已经不是完全二叉树了,自然也不能称为堆。

所以这里我们要改变一下思路。我们在删除堆顶元素之前,先将最后一个节点放到堆顶。然后利用同样的父子节点对比的方法,对于不满足父子节点大小关系的,互换两个节点,并且重复进行这个过程,直到父子节点之间满足大小关系为止。这就是自上而下的堆化方法。

在这里插入图片描述
因为我们移除的是数组中的最后一个元素,而在堆化的过程中,都是交换操作,不会出现数组的空洞。所以这种方法堆化之后的结果,肯定满足完全二叉树的特性。

	private void heapify(int[] arr, int count, int index) {
		while (true) {
			int maxPos = index;
			//先和左子节点比
			if (index*2 <= count && arr[index] < arr[index*2]) { 
				maxPos = index * 2;
			}
			
			//相当于左子节点和右子节点比大小
			if (index*2+1 <= count && arr[maxPos] < arr[index*2+1]) { 
				maxPos = index * 2 + 1;
			}
			
			//经过上两轮比较,如果maxPos没有改变,说明它已经是最大的了
			if (maxPos == index) {
				break;
			}
			swap(arr, index, maxPos);
			index = maxPos;
		}
	}
	
	public void removeMax() {
		if (this.count == 0) {
			return;
		}
		this.arr[1] = this.arr[count];
		this.count--;
		heapify(arr, count, 1);
	}
	

我们知道,一个包含 n 个节点的完全二叉树,树的高度不会超过 log2n。堆化的过程是顺着节点所在的路径比较交换的,所以堆化的时间复杂度跟树的高度成正比,也就是 O(logn)。插入数据和删除堆顶元素的主要逻辑就是堆化,所以,往堆中插入一个元素和删除堆顶元素的时间复杂度都是 O(logn)。

Ⅳ 堆排序

在之前的文章中,我讲过很多种排序算法,有时间复杂度是 O(n2) 的,有时间复杂度是 O(nlogn) 的。这里我们借助于堆这种数据结构实现的排序算法,叫做堆排序。这种排序方法的时间复杂度非常稳定,是 O(nlogn),并且它还是原地排序算法。

我们可以把堆排序的过程大致分解成两个步骤,建堆排序

A. 建堆

我们首先将数组原地建成一个堆,意思就是,就在原数组上操作,不借用另一个数组。建堆的思路有两种。

第一种就是借助我们前面说的,在堆中插入一个元素的思路。尽管数组中包含 n 个数据,但是我们可以假设,起初堆中只包含一个数据,就是下标为 1 的数据。然后,我们调用前面的插入操作,将下标从 2 到 n 的数据依次插入到堆中。我们这样就将 n 个数据的数组,组织成了堆。

第二种实现思路,和第一种截然相反。第一种建堆思路的处理过程是从前向后处理数组数据,并且每个数据插入堆中时,都是从下往上堆化。而第二种实现思路,是从后往前处理数组,并且每个数据都是从上往下堆化。

我对第二种思路给出一张图示,供大家参考👇 因为叶子节点往下堆化只能自己和自己比较,所以我们直接从最后一个非叶子节点开始,依次堆化就可以了。

在这里插入图片描述
在这里插入图片描述
注意下面数组箭头的位置,我们是从最后一个非叶子节点,也就是最后一个元素下标 / 2 开始,然后往前走。

private static void buildHeap(int[] arr, int n) {
		for (int i = n/2; i >= 1; i--) {
			heapify(arr, n, i);
		}
	}
	
	private static void heapify(int[] arr, int n, int i) {
		while (true) {
			int maxPos = i;
			if (i*2 <= n && arr[i] < arr[i*2]) {
				maxPos = i * 2;
			}
			if (i*2+1 <= n && arr[maxPos] < arr[i*2+1]) {
				maxPos = i * 2 + 1;
			}
			if (maxPos == i) {
				break;
			}
			swap(arr, i, maxPos);
			i = maxPos;
		}
	}

可以看到我们的堆化是从 n/2 开始到 1 结束的,因为在完全二叉树中,下标从 n/2 + 1 到 n 的节点是叶子节点,我们不需要堆化。

现在我们看看建堆的时间复杂度是多少。

每个节点堆化的时间复杂度是 O(logn) ,那 n/2 + 1 个节点堆化的总时间复杂度就是 O(nlogn) 吧?是的,但是不够精确。

实际上,堆排序建堆过程的时间复杂度是 O(n)。

因为叶子节点不需要堆化,所以需要堆化的节点从倒数第二层开始,每个节点堆化的过程中,需要比较和交换的节点个数,和这个节点的高度 k 成正比。

我们可以把每层的节点个数和对应的高度画出来,将每个节点的高度求和,就可以得到建堆的时间复杂度。

在这里插入图片描述
我们将每个非叶子节点的高度求和,得到下面的式子👇
在这里插入图片描述
这个公式的求解需要一点技巧,把等号左右都乘以二,得到 S2,我们将 S2 错位对齐,并且减去 S1,可以得到 S。

在这里插入图片描述
S 的中间部分是一个等比数列,我们用等比数列的公式来计算,得到下面的式子👇
在这里插入图片描述
因为 h = log2n,代入 S,就能得到 S = O(n),所以,建堆的时间复杂度就是 O(n)。

B. 排序

建堆结束之后,数组中的数据已经是按照大顶堆的特性来组织的。数组中的第一个元素就是堆顶,也就是最大的元素。我们把它跟最后一个元素交换一下,那最大的元素就放到了下标为 n 的位置。

这个过程有点类似上面说的删除堆顶元素的操作,当堆顶元素移除以后,我们把下标为 n 的元素放到堆顶,然后再通过堆化的方法,将剩下的 n - 1 个元素重新构建成堆。堆化完成之后,我们再取堆顶的元素,放到下标是 n-1 的位置,一直重复这个过程,直到最后堆中只剩下标为 1 的一个元素,排序就完成了。

在这里插入图片描述
将这个过程写成的代码如下👇

public static void sort(int[] arr, int length) {
		buildHeap(arr, length);
		int k = length;
		while (k > 1) {
			swap(arr, 1, k);
			k--;
			heapify(arr, k, 1);
		}
	}

整个堆排序的过程,只需要极个别临时存储空间,所以堆排序是原地排序算法。堆排序包括建堆和排序两个操作,建堆过程的时间复杂度是 O(n),排序过程的时间复杂度为 O(nlogn),所以,堆排序的整体时间复杂度是 O(nlogn)。

堆排序不是稳定的排序算法,因为在排序的过程,存在将堆的最后一个节点跟堆顶节点互换的操作,所以有可能改变值相同数据的原始相对顺序。

这里我还要再多补充一句,在前面的讲解以及代码中,我的堆中的数据是从数组下标为 1 的位置开始的,如果要从 0 开始存储,就默认往后移一位,比如节点下标是 i,左子节点就是 2i+1,右子节点就是 2i+2。

Ⅴ 堆排序与快速排序的比较

在我的排序中讲的快速排序,它的时间复杂度和堆排序是一样的,甚至堆排序比快排的时间复杂度还要稳定。但是在实际开发中,快排的性能要比堆排序好,有两方面的原因:

第一,堆排序数据访问的方式没有快速排序友好

对于快排来说,数据是顺序访问的,而堆排序数据是跳着访问的,这样对 CPU 缓存是不友好的。

第二,对于同样的数据,在排序过程中,堆排序算法的数据交换次数要多于快速排序。

我们在讲排序的时候,提到了一个概念,就是有序度和逆序度。对于基于比较的排序算法来说,整个排序过程就是由两个基本的操作组成的,比较和交换(或移动)。快排数据交换的次数不会比逆序度多。

但是堆排序的第一步是建堆,建堆的过程会打乱数据原有的相对先后顺序,导致原数据的有序度降低。

另,本文的内容来源于极客时间王争的《数据结构与算法之美》。

  • 4
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值