模型评估与选择

2.1 经验误差与过拟合

错误率(error rate): 分类错误的样本数占样本总数的比例

精度(accuracy):1- 错误率

训练误差 / 经验误差:在训练集上的误差

泛化误差:在新样本上的误差

过拟合

欠拟合

2.2 评估方法

测试集:测试学习器对新样本的判别能力,以测试集上的“测试误差”作为泛化误差的近似

对数据集进行适当的处理,拆分成训练集和测试集,常用的处理方法:

2.2.1 留出法

直接将数据集划分为两个互斥的集合

2.2.2 交叉验证法

将数据集划分为k个大小相似的互斥子集。每次用k-1个子集的并集作为训练集,余下的子集作为测试集合,得到k组训练/测试集,从而进行k次训练和测试,最终返回这k个测试结果的均值。

2.2.4 调参与最终模型

2.3 性能度量

性能度量:衡量模型泛化能力的评价标准

2.3.1 错误率与精度

分类任务中最常用的两种性能度量:错误率,精度

错误率:分类错误的样本数占样本总数的比例

精度:分类正确的样本数占样本总数的比例


2.3.2 查准率,查全率与F1

“查准率” (精确率 precision)
“查全率”(召回率 recall)

对于二分类问题,可以将样例根据其真实类别与学习器预测类别的组合划分为:

  • 真正例(true positive):正例里面被预测为正例
  • 假正例(false positive):反例里面被预测为正例
  • 真反例(true negative):反例里面被预测为反例
  • 假反例(false negative):正例里面被预测为反例

令 TP,FP,TN,FN 分别表示其对应的样例数,则有

精确率与召回率 的定义如下:

“平衡点”(Break-Event Point):精确率 == 召回率时的取值

但是 BEP 过于简化,更常用的是F1度量:

2.3.3 ROC 与 AUC

与P-R曲线类似,我们根据学习器的预测结果对样例进行排序,按此顺序逐个把样本作为正例进行预测,每次计算出两个重要量的值,分别作为横、纵坐标做图。

ROC曲线的的横轴为:假正例率 FP

ROC曲线的的纵轴为:真正例率 TP

2.3.4 代价敏感错误率与代价曲线

代价敏感错误率
不同类型的错误所造成的后果或者代价是不同的,代价敏感错误率是基于非均等代价的。二分类代价矩阵:costij表示将第i类样本预测为第j类样本的代价。一般说来,costii=0;若将第0类判别为第1类所造成的损失更大,则cost01> cost10;在非均等错误代价下,我们希望的是最小化“总体代价”,这样“代价敏感”的错误率为:

2.4 比较检验

使用某种实验评估方法测得学习器的某个性能度量结果,然后对这些结果进行比较。

是直接取得性能度量的值比“大小”吗?

实际上比较复杂,涉及到几个重要因素:

  • 希望比较的是泛化能力。然而获得的是测试集上的性能,测试集也是样本,可能包括的不全;
  • 测试集上的性能与测试集本身的选择有很大关系,且不论使用不同大小的测试集会得到不同的结果,(即使使用相同大小的测试集,若包含的测试样例不同,测试结果也会有不同)
  • 机器学习算法本身具有一定的随机性,即便使用相同的参数设置在同一个测试集上多次运行,其结果也会有不同。


 

  • 30
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值