在进行大数据的项目时,涉及到数据的采集工作,爬虫就是获取数据集的一个工具,本文记录了笔者学习爬虫的过程和总结,案例建议从第一个开始看。
看完这篇文章,想进一步了解的请移步
以下是本篇文章正文内容,建议使用PyCharm等工具进行实践
文章目录
1 准备工作
1.1 python的编码规范
1、python程序第一行加入
# coding = utf-8
2、在python中函数代码块以def关键词开头,后接空格、函数标识符、名称、圆括号、冒号,return用来结束函数,可以返回一个值,也可以不返回。
3、python文件中,加入main函数用于测试程序,表示程序的入口
(所有的调用都写在这里)
def main():
print("hello")
if __name__ == "__main__" :
main()
1.2 引入爬虫所需要的模块
模块:第三方库
爬虫可能需要使用到模块如下:
import sys
from bs4 import BeautifulSoup # 网页解析,获取数据
import re # 正则表达式,进行文字匹配的
import urllib.request,urllib.error # 制定URL,获取数据
import requests
import xlwt # 进行excel操作,存储到excel
import sqlite3 # 进行SQLite操作,存储到数据库
注:有些是python3自带的,有的需要自己使用pip安装
2 requests模块
2.1 介绍
是python中原生的一款基于网络请求的模块,功能强大、简单便捷、效率极高
作用:用来模拟浏览器发请求
2.2 编码的四个流程
共四个步骤,如下:
- 指定URL
- 发起请求
- 获取响应对象中的数据值
- 持久化存储
2.3 第一战:html页面爬取
1、 需求
爬取搜狗首页的页面数据
2、 编码
if __name__ == "__main__" :
# 指定URL
url = 'https://www.sogou.com/'
# 发起请求
requests.get(url = url)
# 获取响应对象
response = requests.get(url = url)
# 获取响应数据,text返回的是字符串形式的响应数据
page_text = response.text
# 持久化存储
with open('./sougou.html','w',encoding='utf-8') as fp:
fp.write(page_text)
2.4 第二战:简易的网页采集器
1、 需求
爬取搜狗指定词条对应的搜索结果界面(简易的网页采集器)
UA伪装:User-Agent
User-Agent:请求载体的身份
UA伪装:门户网站的服务器会检测对应请求的载体身份标识,如果检测到请求的载体为某一款浏览器,但是不是浏览器的话则表示为不正常的请求(爬虫),则服务器会拒绝该次请求
因此,需要进行UA伪装
2、编码
if __name__ == "__main__" :
# UA伪装
headers = {
'User-Agent':'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.1 Safari/605.1.15'
}
# 指定URL
url = 'https://www.sogou.com/web'
# 处理url携带的参数,封装到字典中
kw = input('enter a word')
param={
'query':kw
}
# 发起请求,携带参数
requests.get(url = url,params=param)
# 获取响应对象
response = requests.get(url = url,params=param,headers=headers)
# 获取响应数据,text返回的是字符串形式的响应数据
page_text = response.text
filename = kw+'.html'
# 持久化存储
with open(filename,'w',encoding='utf-8') as fp:
fp.write(page_text)
2.5 第三战:破解百度翻译
1、 需求
破解百度翻译
2、分析
- post请求(携带了参数)
- 响应数据是一组json数据
2、编码
import requests
import json
if __name__ == "__main__" :
# 1、UA伪装
headers = {
'User-Agent':'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.1 Safari/605.1.15'
}
# 2、指定URL
post_url = 'https://fanyi.baidu.com/sug'
# 3、post请求参数处理(同get请求)
data = {
'kw':'dog'
}
# 4、发起请求,携带参数
requests.post(url=post_url,data=data,headers=headers)
# 5、获取响应对象
response = requests.post(url = post_url,data=data,headers=headers)
# 6、获取响应数据,json()返回的是一个对象
dic_obj = response.json()
# 持久化存储
fp=open('./dog.json','w',encoding='utf-8')
json.dump(dic_obj,fp=fp,ensure_ascii=False)
2.6 第四战:爬取豆瓣电影分类排行榜中电影详细数据
1、 需求
爬取豆瓣电影分类排行榜中电影详细数据,https://movie.douban.com/
2、分析
- 滚轮拖动的时候会刷新新的一批电影
- get请求
- json格式
- url:https://movie.douban.com/j/chart/top_list
3、编码
import requests
import json
if __name__ == "__main__" :
# 1、UA伪装
headers = {
'User-Agent':'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.1 Safari/605.1.15'
}
# 2、指定URL
url = 'https://movie.douban.com/j/chart/top_list'
# 3、get请求参数处理
param = {
'type':'24',
'interval_id':'100:90',
'action':'',
'start':'0', # 表示从第1部电影开始
'limit':'20' # 一次取20部
}
# 4、发起请求,携带参数
requests.get(url=url,params=param,headers=headers)
# 5、获取响应对象
response = requests.get(url = url,params=param,headers=headers)
# 6、获取响应数据,json()返回的是一个对象
dic_obj = response.json()
# 持久化存储
fp=open('./movie.json','w',encoding='utf-8')
json.dump(dic_obj,fp=fp,ensure_ascii=False)
2.7 第五战:爬取肯德基餐厅位置信息
1、 需求
爬取肯德基餐厅位置信息 ,http://www.kfc.com.cn/kfccda/index.aspx
2、编码
import requests
import json
if __name__ == "__main__" :
# 1、UA伪装
headers = {
'User-Agent':'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.1 Safari/605.1.15'
}
# 2、指定URL
url = 'http://www.kfc.com.cn/kfccda/ashx/GetStoreList.ashx?opt:keyword'
# 3、post请求参数处理
param = {
'cname': '',
'pid': '',
'keyword':'沈阳',
'pageIndex':'1'
}
# 4、发起请求,携带参数
requests.post(url=url,data=param,headers=headers)
# 5、获取响应对象
response = requests.post(url = url,data=param,headers=headers)
# 6、获取响应数据
page_text = response.text
# 持久化存储
filename = 'sy.html'
# 持久化存储
with open(filename,'w',encoding='utf-8') as fp:
fp.write(page_text)
2.8 第六战:爬取国家药监局化妆品许可证相关数据
1、 需求
爬取国家药监局化妆品许可证相关数据
http://scxk.nmpa.gov.cn:81/xk/
我们所需要的是一家企业的详细信息,需要点进去,如下图所示:
2、分析
- 首页中每个企业对应着一个超级链接,链接到详细信息界面
- 经过测试,我们发现url设置为
http://scxk.nmpa.gov.cn:81/xk/
无法获取数据(可以自己试一下) - 我们可以发现,有ajax请求,响应了json,如下图;因此可以得出结论:首页中的企业信息数据是通过ajax动态请求到的
- 因此,我们需要找到每一家企业详细信息所对应的链接地址,可以发现:
http://scxk.nmpa.gov.cn:81/xk/itownet/portal/dzpz.jsp?id=39213f625bf8425a8e871fb5b15e1dfa
id就是json中的ID - 观察每家企业的详细页的ajax请求后发现,所有的post的url是一样的,只有参数id不同,因此可以批量获取企业的id,将id和url形成一个完整的详情页对应
3、编码
import requests
import json
if __name__ == "__main__" :
# UA伪装
headers = {
'User-Agent':'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/14.0.1 Safari/605.1.15'
}
# 批量获取企业的id
# 指定URL
url = 'http://scxk.nmpa.gov.cn:81/xk/itownet/portalAction.do?method=getXkzsList'
all_data_list=[] # 存储企业的详细数据
id_list = [] # 存储id
# 参数的封装
for page in range(1,362):
page = str(page)
data = {
'on': 'true',
'page': page,
'pageSize': '15',
'productName':'',
'conditionType': '1',
'applyname':'',
'applysn':''
}
# 发起请求,携带参数
requests.post(url=url,headers=headers,data=data)
# 获取响应对象
response = requests.post(url=url,headers=headers,data=data)
# 获取响应数据
json_ids = response.json()
# 取出id
for dic in json_ids['list']:
id_list.append(dic['ID'])
# 获取企业的详细信息
post_url='http://scxk.nmpa.gov.cn:81/xk/itownet/portalAction.do?method=getXkzsById'
for id in id_list:
data={
'id': id
}
detail_json=requests.post(url=post_url,headers=headers,data=data).json()
all_data_list.append(detail_json)
# 持久化存储
fp = open('./allData.json','w',encoding='utf-8')
json.dump(all_data_list,fp=fp,ensure_ascii=False)
友情提示:可能是361页过多,PyCharm会报错;换成十几页就没有问题,很奇怪