【数据结构】第六章 图

笔记【数据结构】第六章 图

6.1 图的逻辑结构

图的定义

图是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:

 G=(V,E)

其中:G表示一个图,V是图G中顶点的集合,E是图G中顶点之间边的集合。

在线性表中,元素个数可以为零,称为空表;
在树中,结点个数可以为零,称为空树;
在图中,顶点个数不能为零,但可以没有边。

若顶点vi和vj之间的边没有方向,则称这条边为无向边,表示为(vi,vj)。

如果图的任意两个顶点之间的边都是无向边,则称该图为无向图

若从顶点vi到vj的边有方向,则称这条边为有向边,表示为<vi,vj>。

如果图的任意两个顶点之间的边都是有向边,则称该图为有向图

简单图:在图中,若不存在顶点到其自身的边,且同一条边不重复出现。

数据结构中讨论的都是简单图。

在线性结构中,数据元素之间仅具有线性关系;

在树结构中,结点之间具有层次关系;

在图结构中,任意两个顶点之间都可能有关系。

含有n个顶点的无向完全图有n×(n-1)/2条边。

含有n个顶点的有向完全图有n×(n-1)条边。

**权:**是指对边赋予的有意义的数值量。

**网:**边上带权的图,也称网图。

路径:在无向图G=(V,
E)中,从顶点vp到顶点vq之间的路径是一个顶点序列(vp=vi0,vi1,vi2,
…, vim=vq),其中,(vij-1,vij)∈E(1≤j≤m)。若G是有向图,则路径也是有方向的,顶点序列满足<vij-1,vij>∈E。

一般情况下,图中的路径不惟一

路径长度:

非带权图——路径上边的个数

带权图——路径上各边的权之和

图的遍历操作要解决的关键问题

在图中,如何选取遍历的起始顶点?

解决方案:从编号小的顶点开始 。

n 在线性表中,数据元素在表中的编号就是元素在序列中的位置,因而其编号是唯一的;

n 在树中,将结点按层序编号,由于树具有层次性,因而其层序编号也是唯一的;

n 在图中,任何两个顶点之间都可能存在边,顶点是没有确定的先后次序的,所以,顶点的编号不唯一。

为了定义操作的方便,将图中的顶点按任意顺序排列起来,比如,按顶点的存储顺序。

从某个起点始可能到达不了所有其它顶点,怎么办?

解决方案:多次调用从某顶点出发遍历图的算法。

因图中可能存在回路,某些顶点可能会被重复访问,那么如何避免遍历不会因回路而陷入死循环?

解决方案:附设访问标志数组visited[n] 。

在图中,一个顶点可以和其它多个顶点相连,当这样的顶点访问过后,如何选取下一个要访问的顶点?

解决方案:深度优先遍历和广度优先遍历。

  1. 深度优先遍历

⑴ 访问顶点v;
⑵ 从v的未被访问的邻接点中选取一个顶点w,从w出发进行深度优先遍历;
⑶ 重复上述两步,直至图中所有和v有路径相通的顶点都被访问到。

  1. 广度优先遍历

⑴ 访问顶点v;

⑵ 依次访问v的各个未被访问的邻接点v1, v2,
…, vk;

⑶ 分别从v1,v2,…,vk出发依次访问它们未被访问的邻接点,并使“先被访问顶点的邻接点”先于“后被访问顶点的邻接点”被访问。直至图中所有与顶点v有路径相通的顶点都被访问到。

是否可以采用顺序存储结构存储图?

图的特点:顶点之间的关系是m:n,即任何两个顶点之间都可能存在关系(边),无法通过存储位置表示这种任意的逻辑关系,所以,图无法采用顺序存储结构。

如何存储图?

考虑图的定义,图是由顶点和边组成的,分别考虑如何存储顶点、如何存储边。

邻接矩阵(数组表示法)

基本思想

用一个一维数组存储图中顶点的信息

用一个二维数组(称为邻接矩阵)存储图中各顶点之间的邻接关系。

向图的邻接矩阵的特点

主对角线为 0 且一定是对称矩阵。

如何求顶点i的度?

邻接矩阵的第i行(或第i列)非零元素的个数。

如何判断顶点 i 和 j 之间是否存在边?

测试邻接矩阵中相应位置的元素arc[i][j]是否为1。

如何求顶点 i 的所有邻接点?

将数组中第 i 行元素扫描一遍,若arc[i][j]为1,则顶点 j 为顶点 i 的邻接点。

有向图的邻接矩阵一定不对称吗?

不一定,例如有向完全图。

如何求顶点 i 的出度?

邻接矩阵的第 i 行元素之和。

如何求顶点 i 的入度?

邻接矩阵的第 i 列元素之和。

如何判断从顶点 i 到顶点 j 是否存在边?

测试邻接矩阵中相应位置的元素arc[i][j]是否为1。

邻接矩阵存储无向图的类



const int MaxSize=10; 

template <class T>

class Mgraph{

  
public:

     
MGraph(T a[ ], int n, int e );   

      
~MGraph( )

      
void DFSTraverse(int v); 

      
void BFSTraverse(int v);

     
  ……

  
private:

      
T vertex[MaxSize]; 

      
int arc[MaxSize][MaxSize]; 

      
int vertexNum, arcNum; 

};

 

邻接矩阵中图的基本操作——构造函数

MGraph(T a[ ], int n, int e );

确定图的顶点个数和边的个数;
输入顶点信息存储在一维数组vertex中;
初始化邻接矩阵;
依次输入每条边存储在邻接矩阵arc中;

4.1 输入边依附的两个顶点的序号i, j;

4.2 将邻接矩阵的第i行第j列的元素值置为1;

4.3 将邻接矩阵的第j行第i列的元素值置为1;

template

MGraph::MGraph(T a[ ], int n, int e) {

vertexNum=n; arcNum=e;

for (i=0; i<vertexNum; i++)

vertex[i]=a[i];

for (i=0; i<vertexNum; i++) //初始化邻接矩阵

    for (j=0; j<vertexNum; j++)

       arc[i][j]=0;             

for (k=0; k<arcNum; k++) {

cin>>i>>j; //边依附的两个顶点的序号

arc[i][j]=1; arc[j][i]=1; //置有边标志

}

}

邻接矩阵中图的基本操作——深度优先遍历

⑴ 访问顶点v;

⑵ 从v的未被访问的邻接点中选取一个顶点w,从w出发进行深度优先遍历;

⑶ 重复上述两步,直至图中所有和v有路径相通的顶点都被访问到。

递归定义

int visited[MaxSize];

template

void MGraph::DFSTraverse(int v){

cout<<vertex[v]; visited [v]=1;

for (j=0; j<vertexNum; j++)

if (arc[v][j]==1 && visited[j]==0)

        DFSTraverse( j );

}

template

void MGraph::DFSTraverse(int v){

cout<<vertex[v]; visited [v]=1;

for (j=0; j<vertexNum; j++)

if (arc[v][j]==1 && visited[j]==0)

       DFSTraverse( j );

}

邻接矩阵中图的基本操作——广度优先遍历

⑴ 访问顶点v;

⑵ 依次访问v的各个未被访问的邻接点v1, v2,
…, vk;

⑶ 分别从v1,v2,…,vk出发依次访问它们未被访问的邻接点,并使“先被访问顶点的邻接点”先于“后被访问顶点的邻接点”被访问。直至图中所有与顶点v有路径相通的顶点都被访问到。

int visited[MaxSize];

template

void MGraph::BFSTraverse(int v){

front=rear=-1; //假设采用顺序队列且不会发生溢出

int Q[MaxSize]; cout<<vertex[v]; visited[v]=1; Q[++rear]=v;

while (front!=rear) {

v=Q[++front];

for (j=0; j<vertexNum; j++)

        if (arc[v][j]==1 &&

visited[j]==0 ) {

              cout<<vertex[j];

visited[j]=1; Q[++rear]=j;

        }

}

}

邻接表存储的基本思想:

对于图的每个顶点vi,将所有邻接于vi的顶点链成一个单链表,称为顶点vi的边表(对于有向图则称为出边表)

所有边表的头指针和存储顶点信息的一维数组构成了顶点表。

邻接表有两种结点结构:顶点表结点和边表结点。

struct ArcNode{

int adjvex;

ArcNode *next;

};

template

struct VertexNode{

T vertex;

ArcNode *firstedge;

};

邻接表存储有向图的类

const int MaxSize=10; //图的最大顶点数

template

class ALGraph

{

public:

ALGraph(T a[ ], int n, int e);

~ALGraph;

void DFSTraverse(int v);

void BFSTraverse(int v);

………

private:

VertexNode adjlist[MaxSize];

int vertexNum, arcNum;

};

邻接表中图的基本操作——构造函数

  1. 确定图的顶点个数和边的个数;

  2. 输入顶点信息,初始化该顶点的边表;

  3. 依次输入边的信息并存储在边表中;

3.1 输入边所依附的两个顶点的序号i和j;

3.2 生成邻接点序号为j的边表结点s;

3.3 将结点s插入到第i个边表的头部;

template

ALGraph::ALGraph(T a[ ], int n, int e)

{

vertexNum=n; arcNum=e;

for (i=0; i<vertexNum; i++)

{

adjlist[i].vertex=a[i];

adjlist[i].firstedge=NULL;

}

for (k=0; k<arcNum; k++)

{

cin>>i>>j;

s=new ArcNode; s->adjvex=j;

s->next=adjlist[i].firstedge;

adjlist[i].firstedge=s;

}

}

邻接表中图的基本操作——深度优先遍历

template

void ALGraph::DFSTraverse(int v){

cout<<adjlist[v].vertex;
visited[v]=1;

p=adjlist[v].firstedge;

while (p!=NULL) {

j=p->adjvex;

if (visited[j]==0) DFSTraverse(j);

p=p->next;

}

}

邻接表中图的基本操作——广度优先遍历

template

void ALGraph::BFSTraverse(int v){

front=rear=-1;

cout<<adjlist[v].vertex;
visited[v]=1; Q[++rear]=v;

while (front!=rear) {

v=Q[++front];    p=adjlist[v].firstedge;    

while (p!=NULL) {

        j= p->adjvex;

        if (visited[j]==0) {

cout<<adjlist[j].vertex;
visited[j]=1; Q[++rear]=j;

        }

        p=p->next;

}

}

}

普里姆(Prim)算法

基本思想

设G=(V,
E)是具有n个顶点的连通网,

T=(U,
TE)是G的最小生成树,

T的初始状态为U={u0}(u0∈V),TE={ },

重复执行下述操作:

在所有u∈U,v∈V-U的边中找一条代价最小的边(u, v)并入集合TE,同时v并入U,直至U=V。

Prim算法——伪代码

  1. 初始化两个辅助数组lowcost(=arc[0][i])和adjvex(=0)(0是始点);

  2. 输出顶点u0,将顶点u0加入集合U中;

  3. 重复执行下列操作n-1次

3.1 在lowcost中选取最短边(lowcost[k]),取对应的顶点序号k;

3.2 输出顶点k和对应的权值;

3.3 将顶点k加入集合U中(lowcost[k]=0);

3.4 调整数组lowcost和adjvex;

Void prime(MGraph G){

for(int i=1;i<G.vertexNu;i++){

lowcost[i]=G.arc[0][i];
adjvex[i]=0;

}

lowcost[0]=0;

for(i=1;i<G.vertexNum;i+++){

k=MinEdge(lowcost,G.vertexNum)

cout<<K<<adjvex[k]<<lowcost[k];

lowcost[k]=0;

   **克鲁斯卡尔(Kruskal)算法**

基本思想:

设无向连通网为G=(V, E),令G的最小生成树为T=(U, TE),其初态为U=V,TE={ },
然后,按照边的权值由小到大的顺序,考察G的边集E中的各条边。

若被考察的边的两个顶点属于T的两个不同的连通分量,则将此边作为最小生成树的边加入到T中,同时把两个连通分量连接为一个连通分量;
若被考察边的两个顶点属于同一个连通分量,则舍去此边,以免造成回路,

如此下去,当T中的连通分量个数为1时,此连通分量便为G的一棵最小生成树。

  1. 初始化:U=V; TE={ };

  2. 循环直到T中的连通分量个数为1

2.1 在E中寻找最短边(u,v);

2.2 如果顶点u、v位于T的两个不同连通分量,则

       2.2.1 将边(u,v)并入TE;

       2.2.2 将这两个连通分量合并为一个;

2.3 在E中标记边(u,v),使得(u,v)不参加后续最短边的选取;

Kruskal算法实现中的三个关键问题

图的存储结构
采用边集数组存储图。
如何判断一条边所依附的两个顶点在同一个连通分两中(并查集)

定义Parent[i]数组。数组分量的值表示顶点i的双亲节点(初值为-1;)

当一条边(u,v)的两个顶点的根结不同时,这两个结点属于不同的连通分量(利用parent 数组查找一棵树的根节点。当一个结点n的parent==-1,树的根节点即为n)

如何将一条边所依附的两个顶点合并到同一个连通分量中

要进行联通分量的合并 ,其中一个顶点所在的树的根节点为vex1,另一个顶点所在的树的根节点为vex2,则:parent[vex2]=vex1;




int main(){

   
int arcNum, int vertexNum;

   
EdgeNode *edge;

   
int *parent;

   
cout<<"please input the number of vertexNum:"; cin>>vertexNum;

   
cout<<"please input the number of edges:";      cin>>arcNum;

   
edge=new EdgeNode[arcNum];     parent=new
int[vertexNum];

   
for(int i=0;i<arcNum;i++) {

      cout<<"Please input the
edges:";

       cin>>edge[i].from>>edge[i].to>>edge[i].weight;

   
}

   
sort(edges, G); //对边集数组进行堆排序,时间复杂性为O(eloge)

   
for (i=0;i<vertexNum;i++)

       parent[i]=-1;  //每个节点分属于不同的集合

   
int k=0,begin,end,count=0;

   
cout<<"next is the MST :"<<endl;

       

  for (k=0;k<arcNum;k++)      {

        
begin=edge[k].from; end=edge[k].to;  

        
int m,n;

       
m=Find(parent,begin);      n=Find(parent,end);

       
if(m!=n) {

           
cout<<begin<<","<<end<<","<<edge[k].weight<<endl;

            parent[n]=m;      

        
   count++;

   
        if(count==vertexNum-1)  break;

      
}

  
}

  
return 0;

}

int Find(int *parent, int node)

{

       int
f;

       f=node;

       while(parent[f]>-1)

              f=parent[f];

       return
f;

}

Dijkstra算法

基本思想:

设置一个集合S存放已经找到最短路径的顶点,S的初始状态只包含源点v,
对vi∈V-S,假设从源点v到vi的有向边为最短路径(从v到其余顶点的最短路径的初值)。
以后每求得一条最短路径v, …, vk,就将vk加入集合S中,并将路径v, …, vk , vi与原来的假设相比较,取路径长度较小者为最短路径。

重复上述过程,直到集合V中全部顶点加入到集合S中。

路径长度最短的最短路径(即第一条最短路)的特点

在这条路径上,必定只含一条边,并且这条边上的权值最小。

下一条路径长度次短的最短路径的特点:

它只可能有两种情况:

或者是直接从源点到该点(只含一条边);

或者是从源点经过顶点v1(第一条最短路径所依附的顶点),再到达该顶点(由两条边组成)。

再下一条路径长度次短的最短路径的特点:

它可能有四种情况:或者是直接从源点到该点(只含一条边); 或者从源点经过顶点v1,再到达该顶点(由两条边组成);或者是从源点经过顶点v2,再到达该顶点(两条条边);或者是从源点经过顶点v1、v2,再到达该顶点(多条边)。

其余最短路径的特点:

它或者是直接从源点到该点(只含一条边);
或者是从源点经过已求得最短路径的顶点(集合S中的顶点),再到达该顶点。

数据结构 :

数组dist[n]:每个分量dist[i]表示当前所找到的从始点v到终点vi的最短路径的长度。初态为:

   若从v到vi有弧,则dist[i]为弧上权值;否则置dist[i]为∞。

数组path[n]:path[i]是一个字符串,表示当前所找到的从始点v到终点vi的最短路径。初态为:若从v到vi有弧,则path[i]为vvi;否则置path[i]空串。

数组s[n]:存放源点和已经找到最短路径的终点,其初态为只有一个源点v。

迪杰斯特拉算法的主要步骤如下:

(1) g为用邻接矩阵表示的带权图。

S←{v0} , dist[i]= g.arcs[v0][vi]

,path[i]=“v0vi”或“”;

将v0到其余顶点的路径长度初始化为权值;

(2) 选择vk,使得

dist[vk]=min(dist[i] | vi∈V-S)

vk为目前求得的下一条从v0出发的最短路径的终点。

将vk加入到S中

(3) 修改从v0出发到集合V-S上任一顶点vi的最短路径的长度。如果

          dist[k]+

g.arcs[k][i]<dist[i]

则将dist[i]修改为

             dist[k]+ g.arcs[k][i] 

            path[i]=path[k]+”vi”

(4) 重复(2)、(3) n-1次,即可按最短路径长度的递增顺序,逐个求出v0到图中其它每个顶点的最短路径。

const int MAX=1000;

void
Dijkstra(MGraph g, int v){

for ( i =0; i<g.vexnum ; i++){

    dist[i]=g.arcs[v][i];  

           if ( dist[i]!= MAX) 

                  path

[i]=g.vertex[v]+g.vertex[i];

           else

                  path[i]=“”;

}

S[0]=g.vertex[v];

num=1;

While (num<g.vextexNum){

k=0;

for(i=0;i<G.vertexNum;i++)

       if((dist[i]<dist[k])   k=i

cout<<dist[k]<<path[k];

s[num++]=G.vertex[k];

for(i=0;i<G.vertexNum;i++)

         if(dist[k]+g.arc[k][i]<dist[i]

{

           dist[i]=dist[k]+g.arc[k][i];

path[i]=path[k]+g.vertex[i];

           }

}

}

每一对顶点之间的最短路径

问题描述:给定带权有向图G=(V, E),对任意顶点vi,vj∈V(i≠j),求顶点vi到顶点vj的最短路径。

解决办法1:每次以一个顶点为源点,调用Dijkstra算法n次。显然,时间复杂度为O(n3)。

解决办法2:弗洛伊德提出的求每一对顶点之间的最短路径算法——Floyd算法,其时间复杂度也是O(n3),但形式上要简单些。

Floyd算法的基本思想如下:

设图g用邻接矩阵法表示,

求图g中任意一对顶点vi、
vj间的最短路径。

(-1) 将vi到vj 的最短的路径长度初始化为(vi,vj), 然后进行如下n次比较和修正:

(0) 在vi、vj间加入顶点v0,比较(vi, v0, vj)和(vi, vj)的路径的长度,取其中较短的路径作为vi到vj的且中间顶点号不大于0的最短路径。

(1) 在vi、vj间加入顶点v1,

得(vi, …,v1)和(v1, …,vj),其中:

(vi, …, v1)是vi到v1 的且中间顶点号不大于0的最短路径,

(v1, …, vj) 是v1到vj 的且中间顶点号不大于0的最短路径,

这两条路径在上一步中已求出。

将(vi, …, v1, …, vj)与上一步已求出的且vi到vj 中间顶点号不大于0的最短路径比较,取其中较短的路径作为vi到vj 的且中间顶点号不大于1的最短路径。

(2)在vi、vj间加入顶点v2,得

(vi, …, v2)和(v2, …, vj), 其中:

(vi, …, v2)是vi到v2 的且中间顶点号不大于1的最短路径,

       (v2, …, vj) 是v2到vj 的且中间顶点号不大于1的最短路径,

       这两条路径在上一步中已求出。

       将(vi,

…, v2, …, vj)与上一步已求出的且vi到vj 中间顶点号不大于1的最短路径比较, 取其中较短的路径作为vi到vj 的且中间顶点号不大于2的最短路径。

……

设计数据结构

图的存储结构:带权的邻接矩阵存储结构

数组dist[n][n]:存放在迭代过程中求得的最短路径长度。

迭代公式: dist-1[i][j]=arc[i][j]

dist k[i][j]=min{distk-1[i][j],
distk-1[i][k]+distk-1[k][j]}

           0≤k ≤n-1

数组path[n][n]:

   存放从vi到vj的最短路径,初始为path[i][j]="vivj"。

Floyd算法——C++描述

void Floyd(MGraph G)

{

for (i=0; i<G.vertexNum; i++)

   for (j=0; j<G.vertexNum; j++)

   {

dist[i][j]=G.arc[i][j];

      if (dist[i][j]!=∞) 

path[i][j]=G.vertex[i]+G.vertex[j];

else path[i][j]="";

}

for (k=0; k<G.vertexNum; k++)

    for

(i=0; i<G.vertexNum; i++)

       for (j=0; j<G.vertexNum; j++)

           if (dist[i][k]+dist[k][j]<dist[i][j])

{

                dist[i][j]=dist[i][k]+dist[k][j];

                path[i][j]=path[i][k]+path[k][j];

          }

}

6.6 有向无环图及其应用

AOV网:在一个表示工程的有向图中,用顶点表示活动,用弧表示活动之间的优先关系,称这样的有向图为顶点表示活动的网,简称AOV网。

AOV网特点:

1.AOV网中的弧表示活动之间存在的某种制约关系。

2.AOV网中不能出现回路 。

拓扑序列:

设G=(V,E)是一个具有n个顶点的有向图,V中的顶点序列v1, v2, …, vn称为一个拓扑序列,当且仅当满足下列条件:若从顶点vi到vj有一条路径,则在顶点的拓扑序列中顶点vi必在顶点vj之前。

拓扑排序:对一个有向图构造拓扑序列的过程称为拓扑排序 。

拓扑序列使得AOV网中所有应存在的前驱和后继关系都能得到满足。

基本思想:

⑴ 从AOV网中选择一个没有前驱的顶点并且输出;

⑵ 从AOV网中删去该顶点,并且删去所有以该顶点为尾的弧;

⑶ 重复上述两步,直到全部顶点都被输出,或AOV网中不存在没有前驱的顶点。

) 基于邻接表的拓扑排序的基本思想

(1)找G中无前驱的顶点

   查找indegree [i]为零的顶点vi;

(2)修改邻接于顶点i的顶点的入度(删除以i为起点的所有弧)

   对链在顶点i后面的所有邻接顶点k,将对应的indegree[k] 减1。

为了避免重复检测入度为零的顶点,可以再设置一个辅助栈,若某一顶点的入度减为0,则将它入栈。每当输出某一入度为0的顶点时,便将它从栈中删除。

拓扑排序算法——伪代码

  1. 栈S初始化;累加器count初始化;

  2. 扫描顶点表,将没有前驱的顶点压栈;

  3. 当栈S非空时循环

3.1 vj=退出栈顶元素;输出vj;累加器加1;

3.2 将顶点vj的各个邻接点的入度减1;

3.3 将新的入度为0的顶点入栈;

  1. if (count<vertexNum) 输出有回路信息;

void TOpSort(){

int
top=-1, count=0;

for(int i=0;i<vertexnum;i++)

if(adjlist[i].in==0) s[++top]=i;

while(top!=-1){

j=s[top–]; cout <<adjlist[j].vertext; count++;

p=adjlist[j].firstedge;

while(p!=NULL){

k=p->adjvex; adjlist[k].in–;

if(adjlist[k].in==0) s[top++]=k;

p=p->next;

}

}

If (count<vertexNum) cout<<“有回路”;

}

AOE网:

在一个表示工程的带权有向图中,

用顶点表示事件,

用有向边表示活动,

边上的权值表示活动的持续时间,

称这样的有向图叫做边表示活动的网,简称AOE网。

AOE网中没有入边的顶点称为始点(或源点),没有出边的顶点称为终点(或汇点)。

AOE网的性质:
(1)有在某顶点所代表的事件发生后,从该顶点出发的各活动才能开始;

⑵ 只有在进入某顶点的各活动都结束,该顶点所代表的事件才能发生。

关键路径:在AOE网中,从始点到终点具有最大路径长度(该路径上的各个活动所持续的时间之和)的路径称为关键路径。

关键活动:关键路径上的活动称为关键活动。

要找出关键路径,必须找出关键活动, 即不按期完成就会影响整个工程完成的活动。

首先计算以下与关键活动有关的量:

⑴ 事件的最早发生时间ve[k]

⑵ 事件的最迟发生时间vl[k]

⑶ 活动的最早开始时间e[i]

⑷ 活动的最晚开始时间l[i]

最后计算各个活动的时间余量 l[k] - e[k],时间余量为0者即为关键活动。

存储结构的选择:

为处理方便,同时采用了邻接矩阵和边集数组两种存储结构。

   邻接矩阵可以方便的查找邻接点,完成时间的最早和最晚发生时间的计算。

边集数组可以方便的计算时间的活动的最晚发生时间

struct Edge{

   int from;

   int to;

   int e;

   int l;

};

class Grap{

   int vertexnum,e;

   int **adjlist;   //邻接矩阵

   int start,end;

   Edge *edge;  //边集数组

public:

   Grap(int n,int e);

   int  path();

};

ve[k]是指从始点开始到顶点vk的最大路径长度。这个长度决定了所有从顶点vk发出的活动能够开工的最早时间。

ve[1]=0

ve[k]=max{ve[j]+len<vj,
vk>} (<vj, vk>∈p[k])

p[k]表示所有到达vk的有向边的集合

vl[k]是指在不推迟整个工期的前提下,事件vk允许的最晚发生时间。

vl[n]=ve[n]

vl[k]=min{vl[j]-len<vk ,
vj>}(<vk, vj>∈s[k])

s[k]为所有从vk发出的有向边的集合

活动的最早开始时间e[i]

若活动ai是由弧<vk , vj>表示,则活动ai的最早开始时间应等于事件vk的最早发生时间。因此,有:

e[i]=ve[k]

活动的最晚开始时间l[i]

活动ai的最晚开始时间是指,在不推迟整个工期的前提下,
ai必须开始的最晚时间。

若ai由弧<vk,vj>表示,

则ai的最晚开始时间要保证事件vj的最迟发生时间不拖后。

因此,有:

l[i]=vl[j]-len<vk, vj>

6.7 图的连通性

无向图的连通性

要想判定一个无向图是否为连通图,或有几个连通分量,通过对无向图遍历即可得到结果。

Ø 连通图:仅需从图中任一顶点出发,进行深度优先搜索(或广度优先搜索),便可访问到图中所有顶点。

Ø 非连通图:需从多个顶点出发进行搜索,而每一次从一个新的起始点出发进行搜索过程中得到的顶点访问序列恰为其各个连通分量中的顶点集。

Ø 求无向图的连通分量(非连通图的遍历方法)

1.count=0;

  1. for (图中每个顶点v)

2.1 if (v尚未被访问过)

         2.1.1 count++;

         2.1.2 从v出发遍历该图(函数调用);
  1. if (count==1) cout<<“图是连通的”;

else cout<<“图中有”<<count<<“个连通分量”;

有向图的连通子图的求解过程


从某顶点出发进行深度优先遍历,并按其所有邻接点都访问完(即出栈)的顺序将顶点排列起来。


从最后完成访问的顶点出发,沿着以该顶点为头的弧作逆向的深度优先遍历。若不能访问到所有顶点,则从余下的顶点中最后访问的那个顶点出发,继续作逆向的深度优先遍历,直至有向图中所有顶点都被访问到为止。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值