初等模型---天气预报的评价

问题背景
明天是否下雨的天气预报常以有雨概率的形式给出,假如第一种预报方法告诉明天有雨概率是80%,第二种预报方法告诉明天有雨概率是60% ,要是明天果真下雨了,能说第一种预报方法一定比第二种好吗?如果好,好多少?要是明天没有下雨呢?
判断预报方法的优劣不能根据一次预报与实际观测的符合程度下结论,假定得到了某地一个月4种预报方法的有雨概率预报,和实际上有雨或无雨的观测结果,见表1,怎样根据这些数据对这4种预报方法给以评价呢?
在这里插入图片描述
在这里插入图片描述
下面给出三种评价这些预报方法的模型。
计数模型
如果我们听到有雨概率大于50%的预报,就认为明天有雨;听到有雨概率小于50%的预报,就认为明天无雨。并且依照明天是否有雨的实际观测,规定预报是否正确,从而可以统计得到预报的正确率。
用这种办法按照实测有雨和无雨、预报有雨和无雨,分成4种情况,对表1中4种预报的结果计数(天数),得到图1。对于有雨概率等于50%的预报,可以认为是毫无意义的,这里不予统计。
在这里插入图片描述
将图1中每种预报两个对角数字之和,除以总的预报夭数(全部4个数字之和),得到4种预报的正确率依次为0.57,0. 71,0.81,0.93。它们可以看作正确预报的概率,是评价预报的一种指标。可是不难看出,预报B虽然有高达0.71的正确率,但这完全是由该地实际上有雨、无雨的天数决定的,实际上预报B毫无用途.。
从实用角度看,对预报的使用者来说,更重要的是以下的条件概率在预报无雨的条件下实测有雨的概率,及在预报有雨的条件下实测无雨的概率。前一个事件出现,可能由于预防不足而受灾导致损失;后一个事件出现,则会造成预防费用的浪费。这两个条件概率可以用图1中的数字来估计。如对预报A,在预报无雨的条件下实测有雨的概率是3/(3+11)。预报的使用者可以根据这两种后果的轻重,将两个条件概率加权综合得到一个指标,不妨称为误报率。设两种后果的损失之比为2:1,则可计算预报A的误报率为(2/3)×(3/14) + (1/3)×(10/16) =0.35,预报C,D的误报率分别为0. 20 ,0. 06,从上面计算的正确率和误报率看,都是预报D最好,预报C次之。
计数模型的缺点是明显的,它只在一定条件下区分预报正确与否,没有考虑
预报有雨概率的具体数字,例如对于90%和60%的预报,不论实测有雨或无雨,结果都是一样的。
记分模型
将预报有雨概率的大小与实测结果(有雨或无雨)比较,给予记分。不同的
记分规则形成不同的模型,如:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
显然,模型1和模型2是等价的。另外注意到,模型3与模型2结果有很大不同,那么究竟采用哪个模型比较好呢?
略去下标 k k k,用 p p p v v v分别表示预报的有雨概率和实测值(1或0),用 f f f表示理论上的有雨概率,注意到 v v v取1和0的概率分别为 f f f 1 − f 1-f 1f,则模型3下的期望分数为:
在这里插入图片描述
图形模型
在这里插入图片描述
模型2
对于有雨概率p=0.8的预报的一种理解是,如果这种预报有10天,而其中实测有8天有雨,那么这个预报就是好的。按照这种想法,对每个不同的预报有雨概率p,统计实测有雨的天数占预报这个p的全部天数的比例,记作q。显然p和q越接近越好。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值