一、时间序列分析---滞后算子(lag operator)

§1.基本概念
时间序列是以观测值发生的时期作为标记的数据集合。一般情况下,我们是从某个特定的时间开始采集数据,直到另一个固定的时间为止,我们可以将获得的数据表示为:
( y 1 , y 2 , . . . , y T ) (y_1,y_2,...,y_T) (y1,y2,...,yT)

如果能够从更早的时间开始观测,或者观测到更晚的时期,那么上面的数据区间可以进一·步扩充。相对而言,上述数据只是一个数据的片段,整个数据序列可以表示为:
( . . . , y 1 , y 2 , . . . , y T , . . . ) = { y t } t = − ∞ t = + ∞ (...,y_1,y_2,...,y_T,...)=\{y_t\}_{t=-\infty}^{t=+\infty} (...,y1,y2,...,yT,...)={yt}t=t=+

例1.1:几种代表性的时间序列
(1)时间趋势本身也可以构成一个时间序列,此时: y t = t y_t=t yt=t ;
(2) 另一种特殊的时间序列是常数时间序列,即: y t = c y_t=c yt=c c c c是常数,这种时间的取值不受时间的影响;
(3)在随机分析中常用的一种时间序列是高斯白噪声过程,表示为: y t = ε t y_t =ε_t yt=εt { ε t } t = − ∞ t = + ∞ \{ε_t\}_{t=-\infty}^{t=+\infty} {εt}t=t=+是一个独立随机变量序列,每个随机变量都服从 N ( 0 , σ 2 ) N(0, σ^2) N(0,σ2)分布。
时间序列之间也可以进行转换,类似于使用函数关系进行转换。它是将输入时间序列转换为输出时间序列。
例1.2:几种代表性的时间序列转换
(1) 假设 x t x_t xt是一个时间序列,假设转换关系为: y t = β x t y_t=βx_t yt=βxt,这种算子是将一个时间序列的每一个时期的值乘以常数转换为一个新的时间序列。
(2) 假设 x t x_t xt w t w_t wt是两个时间序列,算子转换方式为: y t = x t + w t y_t=x_t +w_t yt=xt+wt,此算子是将两个时间序列求和。
定义1.1: 如果算子运算是将一个时间序列的前一期值转化为当期值,则称此算子为滞后算子,记做 L L L。即对任意时间序列 x t x_t xt,滞后算子满足:
L ( x t ) ≡ x t − 1 ( 1 ) L(x_t)\equiv x_{t-1}\qquad(1) L(xt)xt1(1)

类似地,可以定义高阶滞后算子,例如二阶滞后算子记为 L 2 L^2 L2,对任意时间序列 x t x_t xt,二阶滞后算子满足:
L 2 ( x t ) ≡ L [ L ( x t ) ] = x t − 2 ( 2 ) L^2(x_t)\equiv L[L(x_t)]=x_{t-2}\qquad(2) L2(xt)L[L(xt)]=xt2(2)

一般地,对于任意正整数 k k k,有:
L k ( x t ) = x t − k L^k(x_t)=x_{t-k} Lk(xt)=xtk

命题1.1 滞后算子满足线性性质
( 1 ) L ( β x t ) = β L ( x t ) ( 2 ) L ( x t + w t ) = L ( x t ) + L ( w t ) \begin{array}{lcl} (1)L(\beta x_t)=\beta L(x_t)\\ (2)L(x_t+w_t)=L(x_t)+L(w_t) \end{array} (1)L(βxt)=βL(xt)(2)L(xt+wt)=L(xt)+L(wt)

p r o o f : proof: proof:
( 1 ) L ( β x t ) = β x t − 1 = β L ( x t ) ( 2 ) L ( x t + w t ) = x t − 1 + w t − 1 = L ( x t ) + L ( w t ) \begin{array}{lcl} (1)L(\beta x_t)=\beta x_{t-1}=\beta L(x_t)\\ (2)L(x_t+w_t)=x_{t-1}+w_{t-1}=L(x_t)+L(w_t) \end{array} (1)L(βxt)=βxt1=βL(xt)(2)L(xt+wt)=xt1+wt1=L(xt)+L(wt)

由于滞后算子具有上述运算性质和乘法的交换性质,因此可以定义滞后算子多项式,它的作用是通过它对时间序列的作用获得一个新的时间序列,并且揭示这两个时间序列之间的关系。
显然,滞后算子作用到常数时间序列上,时间序列仍然保持常数,即: L ( c ) = c L(c)=c L(c)=c

§2.一阶差分方程
利用滞后算子,可以将前面的一阶差分方程表示成为滞后算子形式:
y t = ϕ y t − 1 + w t = ϕ L y t + w t ( 4 ) y_t=\phi y_{t-1}+w_t=\phi Ly_t+w_t\qquad(4) yt=ϕyt1+wt=ϕLyt+wt(4)

也可以表示为:
( 1 − ϕ L y t ) = w t ( 5 ) (1-\phi Ly_t)=w_t\qquad(5) (1ϕLyt)=wt(5)

在上述等式两边同时作用算子: ( 1 + ϕ L + ϕ 2 L 2 + ⋯ + ϕ t L t ) (1+\phi L+\phi^2 L^2+\cdots+\phi^t L^t) (1+ϕL+ϕ2L2++ϕtLt),可以得到:
( 1 + ϕ L + ϕ 2 L 2 + ⋯ + ϕ t L t ) ( 1 − ϕ L y t ) = ( 1 + ϕ L + ϕ 2 L 2 + ⋯ + ϕ t L t ) w t (1+\phi L+\phi^2 L^2+\cdots+\phi^t L^t)(1-\phi Ly_t)=(1+\phi L+\phi^2 L^2+\cdots+\phi^t L^t)w_t (1+ϕL+ϕ2L2++ϕtLt)(1ϕLyt)=(1+ϕL+ϕ2L2++ϕtLt)wt

计算得到:
( 1 − ϕ t + 1 L t + 1 ) y t = ( 1 + ϕ L + ϕ 2 L 2 + ⋯ + ϕ t L t ) w t (1-\phi^{t+1}L^{t+1})y_t=(1+\phi L+\phi^2 L^2+\cdots+\phi^t L^t)w_t (1ϕt+1Lt+1)yt=(1+ϕL+ϕ2L2++ϕtLt)wt

利用滞后算子性质得到:
y t − ϕ t + 1 L t + 1 y t = w t + ϕ L w t + ϕ 2 L 2 w t + ⋯ + ϕ t L t w t ⇒ y t − ϕ t + 1 y − 1 = w t + ϕ w t − 1 + ϕ 2 w t − 2 + ⋯ + ϕ t w 0 y_t-\phi^{t+1}L^{t+1}y_t=w_t+\phi Lw_t+\phi^2 L^2w_t+\cdots+\phi^t L^tw_t\\\Rightarrow y_t-\phi^{t+1}y_{-1}=w_t+\phi w_{t-1}+\phi^2 w_{t-2}+\cdots+\phi^t w_0 ytϕt+1Lt+1yt=wt+ϕLwt+ϕ2L2wt++ϕtLtwtytϕt+1y1=wt+ϕwt1+ϕ2wt2++ϕtw0

⇒ y t = ϕ t + 1 y − 1 + w t + ϕ w t − 1 + ϕ 2 w t − 2 + ⋯ + ϕ t w 0 ( 6 ) \Rightarrow y_t=\phi^{t+1}y_{-1}+w_t+\phi w_{t-1}+\phi^2 w_{t-2}+\cdots+\phi^t w_0 \qquad(6) yt=ϕt+1y1+wt+ϕwt1+ϕ2wt2++ϕtw0(6)
上述差分方程的解同利用叠代算法得到的解是一致的。 
注意算子作用后的等式:
( 1 + ϕ L + ϕ 2 L 2 + ⋯ + ϕ t L t ) ( 1 − ϕ L y t ) = ( 1 − ϕ t + 1 L t + 1 ) y t (1+\phi L+\phi^2 L^2+\cdots+\phi^t L^t)(1-\phi Ly_t)=(1-\phi^{t+1}L^{t+1})y_t (1+ϕL+ϕ2L2++ϕtLt)(1ϕLyt)=(1ϕt+1Lt+1)yt
即:
( 1 + ϕ L + ϕ 2 L 2 + ⋯ + ϕ t L t ) ( 1 − ϕ L y t ) = y t − ϕ t + 1 y − 1 (1+\phi L+\phi^2 L^2+\cdots+\phi^t L^t)(1-\phi Ly_t)=y_t-\phi^{t+1}y_{-1} (1+ϕL+ϕ2L2++ϕtLt)(1ϕLyt)=ytϕt+1y1
如果时间序列 y t y_t yt是有界的,即存在有限的常数 M M M,使得任意时间均有: ∣ y t ∣ ≤ M |y_t|≤M ytM, 并且 ∣ ϕ ∣ < 1 |\phi|<1 ϕ<1,则上式当中的尾项随着时间增加趋于零,从而有:
lim ⁡ t → ∞ ( 1 + ϕ L + ϕ 2 L 2 + ⋯ + ϕ t L t ) ( 1 − ϕ L y t ) = y t ( 7 ) \lim_{t\to \infty}(1+\phi L+\phi^2 L^2+\cdots+\phi^t L^t)(1-\phi Ly_t)=y_t\qquad(7) tlim(1+ϕL+ϕ2L2++ϕtLt)(1ϕLyt)=yt(7)

如果利用“1”表示恒等算子,则有:
lim ⁡ t → ∞ ( 1 + ϕ L + ϕ 2 L 2 + ⋯ + ϕ t L t ) ( 1 − ϕ L ) = 1 ( 8 ) \lim_{t\to \infty}(1+\phi L+\phi^2 L^2+\cdots+\phi^t L^t)(1-\phi L)=1\qquad(8) tlim(1+ϕL+ϕ2L2++ϕtLt)(1ϕL)=1(8)

记:
( 1 − ϕ L ) − 1 = lim ⁡ t → ∞ ( 1 + ϕ L + ϕ 2 L 2 + ⋯ + ϕ t L t ) ( 9 ) (1-\phi L)^{-1}=\lim_{t\to \infty}(1+\phi L+\phi^2 L^2+\cdots+\phi^t L^t)\qquad(9) (1ϕL)1=tlim(1+ϕL+ϕ2L2++ϕtLt)(9)

因此得到了“逆算子”的表达式,这类似于以滞后算子为变量的函数展开式。
定义2.1: ∣ ϕ ∣ < 1 |\phi|<1 ϕ<1时,定义算子 ( 1 − ϕ L ) (1-\phi L) (1ϕL)的逆算子为 ( 1 − ϕ L ) − 1 (1-\phi L)^{-1} (1ϕL)1,它满足:
( 1 ) ( 1 − ϕ L ) ( 1 − ϕ L ) − 1 = ( 1 − ϕ L ) − 1 ( 1 − ϕ L ) = I ( 10 ) (1)(1-\phi L)(1-\phi L)^{-1}=(1-\phi L)^{-1}(1-\phi L)=I\qquad(10) (1)(1ϕL)(1ϕL)1=(1ϕL)1(1ϕL)=I(10)
其中 I I I表示单位算子,即对任意时间序列 y t y_t yt有: I ( y t ) = y t I(y_t)=y_t I(yt)=yt
(2)在形式上逆算子可以表示为:
( 1 − ϕ L ) − 1 = ∑ j = 0 ∞ ϕ j L j ( 11 ) (1-\phi L)^{-1}=\sum_{j=0}^{\infty}\phi^jL^j\qquad(11) (1ϕL)1=j=0ϕjLj(11)
这表示逆算子作为算子运算规则是:对于任意时间序列 y t y_t yt,有:
( 1 − ϕ L ) − 1 y t = ∑ j = 0 ∞ ϕ j L j y t = ∑ j = 0 ∞ ϕ j y t − j (1-\phi L)^{-1}y_t=\sum_{j=0}^{\infty}\phi^jL^jy_t=\sum_{j=0}^{\infty}\phi^jy_{t-j} (1ϕL)1yt=j=0ϕjLjyt=j=0ϕjytj
如果时间序列 y t y_t yt是有界的,则一阶差分方程的解可以表示为:
y t = w t + ϕ w t − 1 + ϕ 2 w t − 2 + ⋯ + ϕ t w 0 = ∑ j = 0 ∞ ϕ j w t − j y_t=w_t+\phi w_{t-1}+\phi^2 w_{t-2}+\cdots+\phi^t w_0=\sum_{j=0}^{\infty}\phi^jw_{t-j} yt=wt+ϕwt1+ϕ2wt2++ϕtw0=j=0ϕjwtj
可以验算上述表达式确实满足一阶线性差分方程。但是解并不唯一,例如对于任意实数 a 0 a_0 a0,下述形式的表达式均是方程的解。
y t = a 0 ϕ t + ∑ j = 0 ∞ ϕ j w t − j y_t=a_0\phi^t+\sum_{j=0}^{\infty}\phi^jw_{t-j} yt=a0ϕt+j=0ϕjwtj

§3.二阶差分方程
我们考察二阶差分方程的滞后算子表达式:
y t = ϕ 1 y t − 1 + ϕ 2 y t − 2 + w t y_t=\phi_1y_{t-1}+\phi_2y_{t-2}+w_t yt=ϕ1yt1+ϕ2yt2+wt

将其利用滞后算子表示为:
( 1 − ϕ 1 L − ϕ 2 L 2 ) = w t ( 12 ) (1-\phi_1L-\phi_2L^2)=w_t\qquad(12) (1ϕ1Lϕ2L2)=wt(12)

对二阶滞后算子多项式进行因式分解,即寻求 λ 1 \lambda_1 λ1 λ 2 \lambda_2 λ2使得:
( 1 − ϕ 1 L − ϕ 2 L 2 ) = ( 1 − λ 1 L ) ( 1 − λ 2 L ) = 1 − ( λ 1 + λ 2 ) L + λ 1 λ 2 L 2 (1-\phi_1L-\phi_2L^2)=(1-\lambda_1L)(1-\lambda_2L)=1-(\lambda_1+\lambda_2)L+\lambda_1\lambda_2L^2 (1ϕ1Lϕ2L2)=(1λ1L)(1λ2L)=1(λ1+λ2)L+λ1λ2L2

即:
{ ϕ 1 = λ 1 + λ 2 ϕ 2 = − λ 1 λ 2 \begin{cases} \phi_1=\lambda_1+\lambda_2\\\phi_2=-\lambda_1\lambda_2 \end{cases} {ϕ1=λ1+λ2ϕ2=λ1λ2

⇒ \Rightarrow λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2是差分方程对应的特征方程的根:
λ 2 − ϕ 1 λ − ϕ 2 = 0 ( 13 ) \lambda^2-\phi_1\lambda-\phi_2=0\qquad(13) λ2ϕ1λϕ2=0(13)

当特征根 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2落在单位圆内的时候(这也是差分方程的稳定性条件),滞后算子多项式分解为:
( 1 − λ 1 L ) − 1 = 1 + λ 1 L + λ 1 2 L 2 + λ 1 3 L 3 + ⋯ ( 1 − λ 2 L ) − 1 = 1 + λ 2 L + λ 2 2 L 2 + λ 2 3 L 3 + ⋯ \begin{array}{lcl} (1-\lambda_1L)^{-1}=1+\lambda_1L+\lambda_1^2L^2+\lambda_1^3L^3+\cdots\\ (1-\lambda_2L)^{-1}=1+\lambda_2L+\lambda_2^2L^2+\lambda_2^3L^3+\cdots \end{array} (1λ1L)1=1+λ1L+λ12L2+λ13L3+(1λ2L)1=1+λ2L+λ22L2+λ23L3+

此时二阶差分方程解可表示为:
y t = ( 1 − λ 1 L ) − 1 ( 1 − λ 2 L ) − 1 w t y_t=(1-\lambda_1L)^{-1}(1-\lambda_2L)^{-1}w_t yt=(1λ1L)1(1λ2L)1wt

注意到算子分式也可以进行分项分式分解:
1 ( 1 − λ 1 L ) ( 1 − λ 2 L ) = 1 λ 1 − λ 2 ( λ 1 ( 1 − λ 1 L ) − λ 2 ( 1 − λ 2 L ) ) \frac{1}{(1-\lambda_1L)(1-\lambda_2L)}=\frac{1}{\lambda_1-\lambda_2}\left( \frac{\lambda_1}{(1-\lambda_1L)}- \frac{\lambda_2}{(1-\lambda_2L)}\right) (1λ1L)(1λ2L)1=λ1λ21((1λ1L)λ1(1λ2L)λ2)

将上述表达式带入到二阶差分方程解中:
y t = 1 λ 1 − λ 2 ( λ 1 ( 1 − λ 1 L ) − λ 2 ( 1 − λ 2 L ) ) w t = 1 λ 1 − λ 2 [ λ 1 ( 1 + λ 1 L + λ 1 2 L 2 + λ 1 3 L 3 + ⋯   ) − λ 2 ( 1 + λ 2 L + λ 2 2 L 2 + λ 2 3 L 3 + ⋯   ) ] w t = 1 λ 1 − λ 2 [ ( λ 1 − λ 2 ) + ( λ 1 2 − λ 2 2 ) L + ( λ 1 3 − λ 2 3 ) L 2 + ⋯   ] w t = ( c 1 + c 2 ) w t + ( c 1 λ 1 + c 2 λ 2 ) w t − 1 + ( c 1 λ 1 2 + c 2 λ 2 2 ) w t − 2 + ⋯ \begin{array}{lcl} y_t=\frac{1}{\lambda_1-\lambda_2}\left( \frac{\lambda_1}{(1-\lambda_1L)}- \frac{\lambda_2}{(1-\lambda_2L)}\right)w_t\\=\frac{1}{\lambda_1-\lambda_2}[\lambda_1(1+\lambda_1L+\lambda_1^2L^2+\lambda_1^3L^3+\cdots)-\lambda_2(1+\lambda_2L+\lambda_2^2L^2+\lambda_2^3L^3+\cdots)]w_t\\=\frac{1}{\lambda_1-\lambda_2}[(\lambda_1-\lambda_2)+(\lambda_1^2-\lambda_2^2)L+(\lambda_1^3-\lambda_2^3)L^2+\cdots]w_t\\=(c_1+c_2)w_t+(c_1\lambda_1+c_2\lambda_2)w_{t-1}+(c_1\lambda_1^2+c_2\lambda_2^2)w_{t-2}+\cdots \end{array} yt=λ1λ21((1λ1L)λ1(1λ2L)λ2)wt=λ1λ21[λ1(1+λ1L+λ12L2+λ13L3+)λ2(1+λ2L+λ22L2+λ23L3+)]wt=λ1λ21[(λ1λ2)+(λ12λ22)L+(λ13λ23)L2+]wt=(c1+c2)wt+(c1λ1+c2λ2)wt1+(c1λ12+c2λ22)wt2+

其中, c 1 = λ 1 λ 1 − λ 2 , c 2 = − λ 2 λ 1 − λ 2 = λ 2 λ 2 − λ 1 c_1=\frac{\lambda_1}{\lambda_1-\lambda_2},c_2=-\frac{\lambda_2}{\lambda_1-\lambda_2}=\frac{\lambda_2}{\lambda_2-\lambda_1} c1=λ1λ2λ1,c2=λ1λ2λ2=λ2λ1λ2

利用上述公式,可以得到外生扰动的动态反应乘子为:
∂ y t + j ∂ w t = c 1 λ 1 j + c 2 λ 2 j , j = 0 , 1 , 2 , . . . ( 14 ) \frac{\partial y_{t+j}}{\partial w_t}=c_1\lambda_1^j+c_2\lambda_2^j,j=0,1,2,...\qquad(14) wtyt+j=c1λ1j+c2λ2j,j=0,1,2,...(14)

  • 9
    点赞
  • 67
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
华为交换机M-LAG(Multi-Chassis Link Aggregation Group)是一种基于链路聚合的技术,可实现网络设备的冗余、负载均衡和高可用性。下面将介绍如何配置华为交换机M-LAG。 首先需要注意的是,M-LAG技术要求交换机要至少有两台,并且每台交换机必须有至少两个可用的物理接口,用于组成M-LAG群组。 1.创建M-LAG群组:在交换机配置界面中输入以下命令:创建M-LAG群组,并指定群组中主节点的优先级。 [Switch] m-lag configuration [Switch-m-lag-configuration] peer entity 1 [Switch-m-lag-configuration-peer-1] priority 50 [Switch-m-lag-configuration-peer-1] quit [Switch-m-lag-configuration] peer entity 2 [Switch-m-lag-configuration-peer-2] priority 40 [Switch-m-lag-configuration-peer-2] quit 在以上命令中,我们创建了两个M-LAG群组,每个群组包含一台交换机,主节点的优先级分别为50和40。 2.创建M-LAG接口:在交换机配置界面中输入以下命令:创建M-LAG接口,并将该接口绑定到M-LAG群组。 [Switch]interface m-lag 1 [Switch-M-LAG1] port GigabitEthernet 0/0/1 [Switch-M-LAG1] port GigabitEthernet 0/0/2 [Switch-M-LAG1] quit 在以上命令中,我们创建了一个M-LAG接口,并将接口绑定到M-LAG群组1上。该接口由GigabitEthernet 0/0/1和GigabitEthernet 0/0/2两个物理接口组成。 3.为M-LAG接口绑定Tag类型IP地址:在交换机配置界面中输入以下命令:为M-LAG接口绑定Tag类型IP地址。 [Switch]interface m-lag 1.1 [Switch-M-LAG1/1] ip address 192.168.1.1 24 [Switch-M-LAG1/1] quit 在以上命令中,我们为M-LAG接口绑定了一个Tag类型的IP地址,该IP地址为192.168.1.1。 以上就是华为交换机M-LAG配置的基本步骤。通过M-LAG技术,交换机间可以实现冗余备份和负载均衡,提高网络可用性和稳定性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值