给出 n 个点的一棵树,多次询问两点之间的最短距离。
注意:
边是无向的。
所有节点的编号是 1,2,…,n 。
输入格式
第一行为两个整数 n 和 m 。 n 表示点数, m 表示询问次数;
下来 n−1 行,每行三个整数 x,y,k ,表示点 x 和点 y 之间存在一条边长度为 k ;
再接下来 m 行,每行两个整数 x,y ,表示询问点 x 到点 y 的最短距离。
树中结点编号从 1 到 n 。
输出格式
共 m 行,对于每次询问,输出一行询问结果。
数据范围
2≤n≤104 ,
1≤m≤2×104 ,
0<k≤100 ,
1≤x,y≤n
输入样例1:
2 2
1 2 100
1 2
2 1
输出样例1:
100
100
输入样例2:
3 2
1 2 10
3 1 15
1 2
3 2
输出样例2:
10
25
如果依旧采用倍增法的代码,在线做法,一个询问给出一个输出。
#include <bits/stdc++.h>
using namespace std;
const int N = 21010;
int n,m;
int deep[N];
int pre[N][22];
int head[N];
int cnt;
struct node
{
int to,ne,w;
}a[N];
int dis[N];
void add(int x,int y,int z)
{
cnt++;
a[cnt].to=y;
a[cnt].w = z;
a[cnt].ne = head[x];
head[x] = cnt;
}
void dfs(int x)
{
for(int i = head[x];i!=-1;i=a[i].ne)
{
int now = a[i].to;
if(!deep[now])
{
deep[now] = deep[x]+1;
pre[now][0] = x;
dis[now] = dis[x] +a[i].w;
dfs(now);
}
}
}
int lca(int x,int y)
{
if(deep[x]>deep[y])
{
swap(x,y);
ans = 2;
}
for(int i=20;i>=0;i--)
if(deep[pre[y][i]]>=deep[x])
y = pre[y][i];
if(x==y)
return x;
for(int i=20;i>=0;i--)
if(pre[y][i]!=pre[x][i])
y = pre[y][i],x=pre[x][i];
return pre[x][0];
}
int main()
{
cin >> n>>m;
memset(head,-1,sizeof(head));
for(int i=1;i<n;i++)
{
int x,y,z;
cin >> x >>y >>z;
add(x,y,z);
add(y,x,z);
}
deep[1]=1;
dfs(1);
for(int i=1;i<=20;i++)
for(int j = 1;j<=20010;j++)
pre[j][i] = pre[pre[j][i-1]][i-1];
for(int i=1;i<=m;i++)
{
int x,y;
cin >> x>>y;
if(x==y)
cout <<"0"<<endl;
else
{
int p = lca(x,y);
cout <<dis[x]+dis[y]-2*dis[p]<<endl;
}
}
return 0;
}
运用tarjan做法求LCA,离线做法,将所有询问保存下来,最后输出。
对询问元素的配对元素进行检查,若配对元素st[x]==2代表此元素已经回溯,可以用并查集求这个元素的祖先,找到的这个祖先就是双方元素的LCA。
#include <bits/stdc++.h>
using namespace std;
const int N = 20010;
int head[N],dis[N],pre[N],cnt,deep[N],ans[N],st[N];
int n,m;
vector<pair<int,int> > v[N];
struct node
{
int to,w,ne;
} a[N];
void add(int x,int y,int z)
{
cnt++;
a[cnt].to = y;
a[cnt].w = z;
a[cnt].ne = head[x];
head[x] = cnt;
}
int ffind(int x)
{
if(x==pre[x])
return x;
return pre[x]=ffind(pre[x]);
}
void dfs(int x)
{
for(int i=head[x]; i!=-1; i=a[i].ne)
{
int now = a[i].to;
if(!deep[now])
{
deep[now] = deep[x]+1;
dis[now] = dis[x]+a[i].w;
dfs(now);
}
}
}
void tarjan(int x)
{
st[x] = 1;
for(int i=head[x]; i!=-1; i=a[i].ne)
{
int now = a[i].to;
if(!st[now])
{
tarjan(now);
pre[now] = x;
}
}
for(auto each:v[x])
{
int xx = each.first,yy = each.second;
if(st[xx] == 2)
{
int k = ffind(xx);
ans[yy] = dis[x]+dis[xx]-2*dis[k];
}
}
st[x] = 2;
}
int main()
{
memset(head,-1,sizeof(head));
cin >> n >>m;
for(int i=1; i<n; i++)
{
int x,y,z;
cin >> x >>y >>z;
add(x,y,z);
add(y,x,z);
}
deep[1] = 1;
for(int i=1; i<=n; i++)
pre[i] = i;
dfs(1);
for(int i=1; i<=m; i++)
{
int x,y;
cin >> x >>y;
v[x].push_back({y,i});
v[y].push_back({x,i});
}
tarjan(1);
for(int i=1; i<=m; i++)
{
cout <<ans[i]<<endl;
}
return 0;
}