欧拉图与汉密尔顿图

欧拉路径(每条边只能走一次)
一、无向图
1 存在欧拉路径的充要条件 : 度数为奇数的点只能有0或2个
2 存在欧拉回路的充要条件 : 度数为奇数的点只能有0个
二、有向图
1 存在欧拉路径的充要条件 : 要么所有点的出度均=入度;
要么除了两个点之外,其余所有点的出度=入度 剩余的两个点:一个满足出度-入度==1(起点) 一个满足入度-出度=1(终点)
2 存在欧拉回路的充要条件 : 所有点的出度均等于入度。

例题:

在图论中,欧拉路径是图中的一条路径,该路径满足恰好访问每个边一次。

而欧拉回路是一条在同一顶点处开始和结束的欧拉路径。

它们最早由欧拉于 1736 年解决著名的哥尼斯堡七桥问题时提出。

事实证明,如果一个连通图的所有顶点的度数都为偶数,那么这个连通图具有欧拉回路,且这个图被称为欧拉图。

如果一个连通图中有两个顶点的度数为奇数,其他顶点的度数为偶数,那么所有欧拉路径都从其中一个度数为奇数的顶点开始,并在另一个度数为奇数的顶点结束。

具有欧拉路径但不具有欧拉回路的图被称为半欧拉图。

现在,给定一个无向图,请你判断它是欧拉图、半欧拉图还是非欧拉图。

输入格式
第一行包含两个整数 N 和 M,表示无向图的点和边的数量。

接下来 M 行,每行包含两个整数 a,b,表示点 a 和 b 之间存在一条边。

所有点的编号从 1∼N。

输出格式
首先,在第一行按顺序输出点 1∼N 中每个点的度数。

第二行输出对该图的判断,Eulerian(欧拉图),Semi-Eulerian(半欧拉图),Non-Eulerian(非欧拉图)。

行尾不得有多余空格。

数据范围
1≤N≤500,
1≤M≤N(N−1)2
输入样例1:
7 12
5 7
1 2
1 3
2 3
2 4
3 4
5 2
7 6
6 3
4 5
6 4
5 6
输出样例1:
2 4 4 4 4 4 2
Eulerian
输入样例2:
6 10
1 2
1 3
2 3
2 4
3 4
5 2
6 3
4 5
6 4
5 6
输出样例2:
2 4 4 4 3 3
Semi-Eulerian
输入样例3:
5 8
1 2
2 5
5 4
4 1
1 3
3 2
3 4
5 3
输出样例3:
3 3 4 3 3
Non-Eulerian

记得判断是否连通

#include <bits/stdc++.h>

using namespace std;
const int N = 100010;
vector<int> v[N];
int n,m;
int vis[N];
int flag=0;
void dfs(int x)
{
    vis[x]=1;
    for(int each:v[x])
    {
        if(vis[each]==0)
        {
            dfs(each);
        }
    }
}
int main()
{
    cin >> n >>m;
    for(int i=1;i<=m;i++)
    {
        int x,y;
        cin >> x>> y;
        v[x].push_back(y);
        v[y].push_back(x);
    }
    int cnt=0;
    for(int i=1;i<=n;i++)
    {
        if(v[i].size()%2!=0)
        cnt++;
         cout <<v[i].size();
         if(i!=n)
         cout <<" ";
    }
    cout<<endl;
    for(int i=1;i<=n;i++)
    {
        if(vis[i]==0)
        {
            flag++;
            dfs(i);
        }
    }
    if(flag>1)
    {
        cout <<"Non-Eulerian";
        return 0;
    }
    if(cnt==0)
    {
        cout <<"Eulerian";
    }
    else if(cnt==2)
    {
        cout<<"Semi-Eulerian";
    }
    else
    cout <<"Non-Eulerian";
   
    
    
    return 0;
}

汉密尔顿图,走顶点

与欧拉图的情形不同,还未找到判断一个图是否是哈密顿图的非平凡的充要条件。事实上这是图论中尚未解决的主要问题之一。哈密顿图有很多充分条件,例如,
(1)若图的最小度不小于顶点数的一半,则图是哈密顿图;
(2)若图中每一对不相邻的顶点的度数之和不小于顶点数,则图是哈密顿图。
另外,还有很多
例题:

哈密顿回路问题是找到一个包含图中每个顶点的简单回路。

这样的回路称为“哈密顿回路”。

在本题中,你需要做的是判断给定路径是否为哈密顿回路。

输入格式
第一行包含一个整数 N 表示顶点数,一个整数 M 表示给定无向图中的边数。

接下来 M 行,每行包含两个整数 a,b,表示点 a 和 b 之间存在一条边。

所有顶点编号从 1 到 N。

再一行给出整数 K,表示询问次数。

接下来 K 行,每行包含一个询问,格式如下:

n V1 V2 … Vn
n 表示给定路径经过的点的数目,Vi 是路径中经过的点。

输出格式
对于每个询问,如果是哈密顿回路则在一行输出 YES,否则输出 NO。

数据范围
2<N≤200,
N−1≤M≤N(N−1)2,
1≤K≤1000,
1≤n≤410
输入样例:
6 10
6 2
3 4
1 5
2 5
3 1
4 1
1 6
6 3
1 2
4 5
6
7 5 1 4 3 6 2 5
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 3 4 5 2 6
7 6 1 2 5 4 3 1
输出样例:
YES
NO
NO
NO
YES
NO

必须是严格的首尾相连

#include <bits/stdc++.h>

using namespace std;
vector<int> v[1010];

int n,m,k,t;
int vis[1010];
int main()
{
    ios::sync_with_stdio(false);
    cin >> n >>m ;
    for(int i=1;i<=m;i++)
    {
        int x,y;
        cin >> x >>y;
        v[x].push_back(y);
        v[y].push_back(x);
    }
    cin >> t;
    while(t--)
    {
        int flag=1;
        memset(vis,0,sizeof(vis));
        vector<int> path;
        cin >> k;
        for(int i=1;i<=k;i++)
        {
            int x;
            cin >> x;
            if(i!=k)
            {
              vis[x]++;
              if(vis[x]>1)
              flag=0;
            }
            path.push_back(x);
        }
        if(k!=n+1||path[0]!=path[k-1]||flag==0)
        {
            cout <<"NO"<<endl;
            continue;
        }
     
        for(int i=0;i<path.size()-1;i++)
        {
            int x = path[i];
            int y = path[i+1];
            if(find(v[x].begin(),v[x].end(),y)==v[x].end())
            {
                flag=0;
                break;
            }
        }
       
        if(!flag)
        cout <<"NO"<<endl;
        else
        cout <<"YES"<<endl;
    }
    return 0;
}
  • 6
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值