问题描述
定义阶乘 n! = 1 × 2 × 3 × · · · × n。
请问 100! (100 的阶乘)有多少个约数。
思路:(菜鸡根本没思路好吗?!!)
约数定理/唯一分解定理/中国剩余定理。
任何一个大于1的自然数,如果N不为质数(质数是除了1和它本身,不被任何数整除的数),都可以唯一分解成有限个质数的乘积,这里均为质数,其诸指数是正整数。
一个大于1的正整数N,如果它的标准分解式为 ,那么它的正因数个数为
文字不容易理解,看例题吧:
例题:正整数378000共有多少个正约数?
解:将378000分解质因数378000=2^4 × 3 ^3 × 5 ^3 × 7 ^1
由约数个数定理可知378000共有正约数(4+1)×(3+1)×(3+1)×(1+1)=160个。
由于100!太大了,我们可以一个乘数一个乘数来拆分。
#include <string.h>
#include <stdio.h>
#include <math.h>
#include <queue>
#include <algorithm>
#include <iostream>
#define ll long long
using namespace std;
int a[100010];
int main()
{
int i,j,n;
for (i=2;i<=100;i++)//100的阶乘
{
int x=i;
//拆分i,可以把i拆分成 x的几次方乘y的几次方等等
//比如378000拆分成(2^4)*(3^3)*(5^3)*(7^1),共有正约数(4+1)*(3+1)*(3+1)*(1+1)=160个
//由于100!太大了,所以我们采用一个乘数一个乘数来拆分。
for (j=2;j*j<=x;j++)
{
if (x%j==0)
{ //如果x能被j乘除
int cnt=0;
while(x%j==0)
{//x能被几个j整除
++cnt;
x/=j;
}
a[j]+=cnt;//j^cnt
}
}
//x不等于1说明前面几的几次方相乘,乘积并不等于i,需要乘以剩下的x
if (x!=1)
a[x]++;
}
ll ans=1;
for (i=1;i<=100;i++)
{
if (a[i])
{
//printf("%d %d\n",i,a[i]);
ans=ans*(a[i]+1);
}
}
printf("%lld\n",ans);
return 0;
}