2020蓝桥国赛 阶乘约数

问题描述
定义阶乘 n! = 1 × 2 × 3 × · · · × n。
请问 100! (100 的阶乘)有多少个约数。
思路:(菜鸡根本没思路好吗?!!)
约数定理/唯一分解定理/中国剩余定理。
任何一个大于1的自然数,如果N不为质数(质数是除了1和它本身,不被任何数整除的数),都可以唯一分解成有限个质数的乘积,这里均为质数,其诸指数是正整数。

一个大于1的正整数N,如果它的标准分解式为 在这里插入图片描述,那么它的正因数个数为
文字不容易理解,看例题吧:

例题:正整数378000共有多少个正约数?
解:将378000分解质因数378000=2^4 × 3 ^3 × 5 ^3 × 7 ^1
由约数个数定理可知378000共有正约数(4+1)×(3+1)×(3+1)×(1+1)=160个。
由于100!太大了,我们可以一个乘数一个乘数来拆分。

#include <string.h>
#include <stdio.h>
#include <math.h>
#include <queue>
#include <algorithm>
#include <iostream>
#define ll long long
using namespace std;
int a[100010];
int main()
{
	int i,j,n;
	for (i=2;i<=100;i++)//100的阶乘 
	{
		int x=i;
		//拆分i,可以把i拆分成 x的几次方乘y的几次方等等
		//比如378000拆分成(2^4)*(3^3)*(5^3)*(7^1),共有正约数(4+1)*(3+1)*(3+1)*(1+1)=160个
		//由于100!太大了,所以我们采用一个乘数一个乘数来拆分。 
		for (j=2;j*j<=x;j++)
		{
			if (x%j==0)
			{	//如果x能被j乘除 
				int cnt=0;
				while(x%j==0)
				{//x能被几个j整除 
					++cnt;
					x/=j;
				}
				a[j]+=cnt;//j^cnt
			}
		}
		//x不等于1说明前面几的几次方相乘,乘积并不等于i,需要乘以剩下的x			 
		if (x!=1)
		a[x]++;
	}
	
	ll ans=1;
	for (i=1;i<=100;i++)
	{
		if (a[i])
		{
			//printf("%d %d\n",i,a[i]);
			ans=ans*(a[i]+1);
		}
	}
	printf("%lld\n",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值