- 博客(4)
- 收藏
- 关注
原创 【遥感影像处理】最大似然分类(附MATLAB代码)
引言最大似然分类(也叫贝叶斯分类)是一种常见的监督分类的方法,其实现方法比较简单,因此通常会作为相关课程的编程小作业。这篇帖子就是以我自己做过的一个小作业为例进行说明。原理最大似然分类是一种监督分类,监督分类的概念想必大家都清楚,我们需要将数据分为训练集和测试集。至于最大似然的原理,网上有很多帖子都介绍了,我自己讲估计也讲不清楚,就只说一下编程实现的方法吧。1. 通过训练集数据计算每一个类别的最大似然判别函数要分多少个类别,就有多少个判别函数。判别函数中的x是一个列向量,比如一张RGB影像,其R
2022-01-11 17:09:44 9846 5
原创 【计算机视觉】直接线性变换(DLT)求解P矩阵(3 加入坐标的归一化)(附MATLAB代码)
引言本来上一篇帖子就已经达到了精度要求,不过经过同学提醒才发现老师的作业要求中有要求考虑归一化。emmmmm坐标归一化进行归一化的必要性和方法参考 《计算机视觉中的多视几何》中的描述:上面的是从 2D到2D的结论,不过与从3D到2D的结论是相似的:总结一下,就是在计算之前,要将空间点和平面点都进行归一化,空间点要归一化到距离原点的平均距离为√3,平面点要归一化到距离原点的平均距离为√2。在计算完过后在进行去归一化。其他的计算过程和上一篇帖子讲的完全相同。如何将点位归一化到这种状态可以参考
2021-12-19 12:22:49 3973 5
原创 【计算机视觉】直接线性变换(DLT)求解P矩阵(2 使用SVD分解)(附MATLAB代码)
引言之前的帖子已经完成了一种计算直接线性变换的方法,是直接通过矩阵运算来进行的,不过随后得到的结果并不能满足精度要求,如果只是用来作为迭代优化的一个初值的话,对于精度的要求倒也不用那么高。但在查阅资料时又发现了另一种解法,是通过SVD分解来进行的,确实可以得到精度更高的结果。SVD分解解释奇异值分解的原理的帖子也有很多,我就不班门弄斧了(主要是我也没怎么弄懂QAQ)这里贴两个链接:SVD(奇异值分解)小结B站上一个讲奇异值分解的视频,这个强烈推荐:什么是奇异值分解SVD原理部分,感兴趣的可以
2021-12-19 11:20:07 3803 2
原创 【计算机视觉】直接线性变换(DLT)求解P矩阵(附C++和MATLAB代码)
引言本科阶段学习计算机视觉的时候也写过相机检校的程序,里面求解相机变换矩阵的时候使用的就是DLT算法,但这一次的作业只是要求计算投影矩阵(即P矩阵)原理讲解DLT算法的原理的帖子已经很多了,推荐下面这个链接:双目视觉算法研究(二)相机模型和直接线性法(DLT)代码这里的C++ 代码中用到了一个常用的矩阵运算库Eigen,这个库只需要把头文件放到 include 文件夹中就可以用了,非常方便。Eigen的参考文档当中已经说得很清楚了,不过如果不想看英文的话,可以参考这个链接:C++ 开源矩阵
2021-11-29 13:27:29 6764 6
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人