【剑指26】树的子结构

该博客探讨了一种解决二叉树子结构问题的方法,通过先序遍历实现。文章详细解释了如何利用递归函数判断二叉树A中是否存在以特定节点为根的二叉树B的子结构,并提供了相关代码实现。这种方法的时间复杂度为O(mn),空间复杂度为O(m),适用于m大于n的情况。
摘要由CSDN通过智能技术生成

方法一:先序判断每个节点:时间O(mn),空间O(m) m>n

题解:

  1. 先序遍历二叉树A
  2. 判断二叉树A节点node为根,二叉树B能否构成子结构,
  3. 接口 isSubStructure() 先序遍历二叉树 A ,recur() 判断是不是子结构
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution 
{
public:
    bool recur(TreeNode* a, TreeNode* b)
    {
        if (b == nullptr)
            return true;
        if (a == nullptr || a->val != b->val)
            return false;
        return rescur(a->left, b->left) && rescur(a->right, b->right);
    }
    bool isSubStructure(TreeNode* A, TreeNode* B) 
    {
        // 先序判断每个节点是否能构成子树
        // 1.先序遍历树A
        // 2.判断树A以n为根节点,是否能构成子树B,若能构成则返回true
        if (A == nullptr || B == nullptr)
            return false;
        return rescur(A, B) || isSubStructure(A->left, B) || isSubStructure(A->right, B);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值