数据结构——分析算法时间复杂度与空间复杂度(青岛大学-王卓老师)

2个nxn矩阵相处的算法可描述为:

for(i=1;i<=n;i++){
   								//n+1次		n次加判断1次
	for(j=1;j<=n;j++){
   							//n(n+1)次	外n次*(内n次+内判断1次)
+		c[i][j]=0;								//n*n次		
		for(k=0;k<n;k++){
   						//n*n*(n+1)次	外n*n次*(内n次+内判断1次(从0开始))
			c[i][j]=c[i][j]+a[i][k]*b[k][j];	//n*n*n次		
		}
	}
}

我们把算法所耗费的时间定义为该算法中每条语句的频度之和,则上述算法的时间消耗T(n)为:

T(n)=2n^3^ +3n^2^+2n+1

算法的渐进时间复杂度

若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作:

T(n)=O(f(n))

称O(f(n))为算法的渐进时间复杂度(O是数量级的符号),简称时间复杂度
一般情况下,不必计算所有操作的执行次数,而只考虑算法中基本操作执行的次数,它是问题规模n的某个函数,用过T(n)表示


分析算法时间复杂度的基本办法

  1. 找出
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值