2个nxn矩阵相处的算法可描述为:
for(i=1;i<=n;i++){
//n+1次 n次加判断1次
for(j=1;j<=n;j++){
//n(n+1)次 外n次*(内n次+内判断1次)
+ c[i][j]=0; //n*n次
for(k=0;k<n;k++){
//n*n*(n+1)次 外n*n次*(内n次+内判断1次(从0开始))
c[i][j]=c[i][j]+a[i][k]*b[k][j]; //n*n*n次
}
}
}
我们把算法所耗费的时间定义为该算法中每条语句的频度之和,则上述算法的时间消耗T(n)为:
算法的渐进时间复杂度
若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作:
称O(f(n))为算法的渐进时间复杂度(O是数量级的符号),简称时间复杂度
一般情况下,不必计算所有操作的执行次数,而只考虑算法中基本操作执行的次数,它是问题规模n的某个函数,用过T(n)表示
分析算法时间复杂度的基本办法
- 找出
最低0.47元/天 解锁文章
4929

被折叠的 条评论
为什么被折叠?



