问题 A: Hanoi双塔问题
题目描述
楚继光:“防御系统还真有用,修罗王的魔法炮阵的火力果然减弱了,但好像还差一点点啊?”
墨老师:“哦,是吗,那试试双塔防御体系吧。”
不玩梗浑身难受
如图所示,给定A,B,C三根足够长的细柱,在A柱上放有2n个中间有空的能量圆盘,共有n个不同的尺寸,每个尺寸都有两个相同的圆盘,注意这两个圆盘是不加区分的,图为n=3的情形。现要将这些圆盘移到C柱上,在移动过程中可放在B柱上暂存。每次只能移动一个圆盘,每个柱子的圆盘保持上小下大的顺序。要求输出最少移动次数。
输入
一个正整数,表示A柱上有2n个圆盘。
输出
仅一行,包含一个正整数,为最少移动次数。
样例输入 Copy
2
样例输出 Copy
6
提示
对于100%数据,1≤n≤200。
//这其实就是汉诺塔然后乘以二
//然后不用模拟的话直接找规律也不是不行
//然后long long只到2的64次方 所以碰到200会炸 大整数
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <ctype.h>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <algorithm>
#include <iostream>
using namespace std;
int a[205] = {0};
int main()
{
ios::sync_with_stdio(false),cin.tie(NULL);
int n; cin>>n;
int m = n - 1; a[1] = 1;
while(m--)
{
for(int i = 1; i <= 200; i++)
{
a[i] *= 2;
}
a[1]++;
for(int i = 1; i <= 200; i++)
{
if(a[i] >= 10)
{
a[i + 1] += (a[i] / 10);
a[i] %= 10;
}
}
}
for(int i = 1; i <= 200; i++)
{
a[i] *= 2;
}
for(int i = 1; i <= 200; i++)
{
if(a[i] >= 10)
{
a[i + 1] += (a[i] / 10);
a[i] %= 10;
}
}
for(int i = 200; i >= 1; i--)
{
if(a[i])
{
for(int j = i; j >= 1; j--)
{
cout<<a[j];
}
cout<<'\n';
break;
}
}
return 0;
}
temp + 1 + temp这个思路其实是对的 WA是因为后来输出的时候cout<<a[i]了
其实和2^n这种思路说不上谁会更好
所以都拿出来了
反正都能过
//这其实就是汉诺塔然后乘以二
//然后不用模拟的话直接找规律也不是不行
//然后long long只到2的64次方 所以碰到200会炸 大整数
//temp + 1 + temp相对于2的n次方减一简直是拉跨
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <ctype.h>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <algorithm>
#include <iostream>
using namespace std;
int a[205] = {0};
int main()
{
ios::sync_with_stdio(false),cin.tie(NULL);
int n; cin>>n;
a[1] = 1;
while(n--)
{
for(int i = 1; i <= 200; i++)
{
a[i] *= 2;
}
for(int i = 1; i <= 200; i++)
{
if(a[i] >= 10)
{
a[i + 1] += (a[i] / 10);
a[i] %= 10;
}
}
}
if(a[1]) a[1]--;
else
{
for(int i = 2; i <= 200; i++)
{
if(a[i])
{
a[i]--;
for(int j = 1; j <= i - 1; j++) a[j] = 9;
break;
}
}
}
for(int i = 1; i <= 200; i++)
{
a[i] *= 2;
}
for(int i = 1; i <= 200; i++)
{
if(a[i] >= 10)
{
a[i + 1] += (a[i] / 10);
a[i] %= 10;
}
}
for(int i = 200; i >= 1; i--)
{
if(a[i])
{
for(int j = i; j >= 1; j--)
{
//cout<<a[i];啊这
cout<<a[j];
}
cout<<'\n';
break;
}
}
return 0;
}
问题 B: 纪念品分组
题目描述
元旦快到了,校学生会让乐乐负责新年晚会的纪念品发放工作。为使得参加晚会的同学所获得 的纪念品价值相对均衡,他要把购来的纪念品根据价格进行分组,但每组最多只能包括两件纪念品, 并且每组纪念品的价格之和不能超过一个给定的整数。为了保证在尽量短的时间内发完所有纪念品,乐乐希望分组的数目最少。
你的任务是写一个程序,找出所有分组方案中分组数最少的一种,输出最少的分组数目。
输入
输入包含n+2行:
第1行包括一个整数w,为每组纪念品价格之和的上限; 第2行为一个整数n,表示购来的纪念品的总件数G
第3-n+2行每行包含一个正整数Pi (5 <= Pi <= w)w表示所对应纪念品的价格。
100%的数据满足: 1 <= n <= 30000, 80 <= w <= 200
输出
仅1行,包含一个整数, 即最少的分组数目
样例输入 Copy
100 9 90 20 20 30 50 60 70 80 90
样例输出 Copy
6
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <ctype.h>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <algorithm>
#include <iostream>
using namespace std;
int a[30005] = {0};
int b[30005] = {0};
int main()
{
ios::sync_with_stdio(false),cin.tie(NULL);
int n,m; cin>>n>>m;
for(int i = 1; i <= m; i++) cin>>a[i];
sort(a + 1, a + 1 + m);
int s = 1; int e = m; int ans = 0;
while(s < e)
{
if(a[s] + a[e] <= n)
{
b[s] = 1; b[e] = 1;
ans++;
s++; e--;
}
else e--;
}
for(int i = 1; i <= m; i++)
{
if(!b[i]) ans++;
}
cout<<ans<<'\n';
return 0;
}