分治算法解决汉诺塔问题【Java实现】

一、分治算法

分治算法是将一个复杂的问题分成两个或多个相同或相似的子问题,再把子问题分解为更小的子问题,直到最后子问题可以简单地直接求解,原问题即子问题的解的合并。

基本步骤:

1.分解:
	将原问题分解为若干个规模较小、相互独立
	且与原问题形式相同的子问题
2.解决
	如果子问题规模较小能够直接解决则直接解,否则递归地解决各个子问题
3.合并
	将各个子问题的解合并为原问题的解

二、汉诺塔问题

三层汉诺塔解决图示:

思路:

1.如果只有一个盘,则直接将盘 A -> C
2.如果有两个及以上,则总是看成两个盘:
	1.最下面的一个盘
	2.上面的所有盘
3.把上面的所有盘 A -> B
4.把最下面的一个盘 A -> C
5.把 B 上的盘 B -> C

代码实现:

public class HanoiTower {
    public static void main(String[] args) {
        hanoiTower(3, 'A', 'B', 'C');
    }

    /**
     * 分治算法解决汉诺塔问题
     *
     * @param num 一共有多少个盘
     * @param a   第一根柱子
     * @param b   第二根柱子
     * @param c   第三根柱子
     */
    public static void hanoiTower(int num, char a, char b, char c) {
        //如果只有一个盘,直接 a -> c
        if (num == 1) {
            System.out.println("第1个盘 " + a + " -> " + c);
            //如果有两个及以上
        } else {
            //则先将上面所有的盘从 a 借助 c 移动到 b
            hanoiTower(num - 1, a, c, b);
            //将最下面的一个盘 a -> c
            System.out.println("第" + num + "个盘 " + a + " -> " + c);
            //将 b 上所有的盘借助 a 移动到 c
            hanoiTower(num - 1, b, a, c);
        }
    }
}

测试结果:

第1个盘 A -> C
第2个盘 A -> B
第1个盘 C -> B
第3个盘 A -> C
第1个盘 B -> A
第2个盘 B -> C
第1个盘 A -> C
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值