一、分治算法
分治算法是将一个复杂的问题分成两个或多个相同或相似的子问题,再把子问题分解为更小的子问题,直到最后子问题可以简单地直接求解,原问题即子问题的解的合并。
基本步骤:
1.分解:
将原问题分解为若干个规模较小、相互独立
且与原问题形式相同的子问题
2.解决
如果子问题规模较小能够直接解决则直接解,否则递归地解决各个子问题
3.合并
将各个子问题的解合并为原问题的解
二、汉诺塔问题
三层汉诺塔解决图示:
思路:
1.如果只有一个盘,则直接将盘 A -> C
2.如果有两个及以上,则总是看成两个盘:
1.最下面的一个盘
2.上面的所有盘
3.把上面的所有盘 A -> B
4.把最下面的一个盘 A -> C
5.把 B 上的盘 B -> C
代码实现:
public class HanoiTower {
public static void main(String[] args) {
hanoiTower(3, 'A', 'B', 'C');
}
/**
* 分治算法解决汉诺塔问题
*
* @param num 一共有多少个盘
* @param a 第一根柱子
* @param b 第二根柱子
* @param c 第三根柱子
*/
public static void hanoiTower(int num, char a, char b, char c) {
//如果只有一个盘,直接 a -> c
if (num == 1) {
System.out.println("第1个盘 " + a + " -> " + c);
//如果有两个及以上
} else {
//则先将上面所有的盘从 a 借助 c 移动到 b
hanoiTower(num - 1, a, c, b);
//将最下面的一个盘 a -> c
System.out.println("第" + num + "个盘 " + a + " -> " + c);
//将 b 上所有的盘借助 a 移动到 c
hanoiTower(num - 1, b, a, c);
}
}
}
测试结果:
第1个盘 A -> C
第2个盘 A -> B
第1个盘 C -> B
第3个盘 A -> C
第1个盘 B -> A
第2个盘 B -> C
第1个盘 A -> C