- 博客(12)
- 收藏
- 关注
原创 embedding词向量的使用
embedding词向量的使用什么是PyTorch?PyTorch是一个基于Python的科学计算库,它有以下特点:类似于NumPy,但是它可以使用GPU可以用它定义深度学习模型,可以灵活地进行深度学习模型的训练和使用Tensors(高维的矩阵就是Tensor)Tensor类似与NumPy的ndarray,唯一的区别是Tensor可以在GPU上加速运算。这个是两层的神经网络,分别是1000维,100维,10维。h是中间神经元的个数。pytorch基本上做的事情:定义输入输出定义模型
2021-06-11 12:03:35 688 2
原创 引入注意力机制
在模型中引入注意力机制深度学习attention 机制是对人类视觉注意力机制的仿生,本质上是一种资源分配机制。生理原理就是人类视觉注意力能够以高分辨率接收于图片上的某个区域,并且以低分辨率感知其周边区域,并且视点能够随着时间而改变。换而言之,就是人眼通过快速扫描全局图像,找到需要关注的目标区域,然后对这个区域分配更多注意,目的在于获取更多细节信息和抑制其他无用信息。提高 representation 的高效性。.Encoder-Decoder框架==sequence to sequence 条件生.
2021-06-11 11:38:56 2985 3
原创 统计学习简要介绍
统计学习简要介绍 统计学习介绍目录1.统计学习基本概念2.统计学习模型三要素3.统计学习要解决的问题统计学习基本概念什么是统计学习?统计学习从数据出发,通过对已知数据的分析来实现对未知数据的预测。而对数据的预测与分析是通过构建概率统计模型来实现的,统计学习的目标就是考虑学习什么样的模型和如何学出这个模型,以使模型能对数据进行准确的预测与分析。统计学习三要素模型:是在参数空间中...
2021-04-21 22:07:53 608
原创 个人项目实训(五)——Bert模型(1)
我们通常希望语义相近的字/词在特征向量空间上的距离也比较接近,如此一来,由字/词向量转换而来的文本向量也能够包含更为准确的语义信息。因此,BERT模型的主要输入是文本中各个字/词的原始词向量,该向量既可以随机初始化,也可以利用Word2Vector等算法进行预训练。
2021-04-16 18:38:06 272
原创 个人项目实训(二)——基于规则的方法,Seq2Seq
这些方法成功关键取决于将陈述句转换到疑问句的规则设计得是否足够好,而转化规则通常需要设计者具有深层的语言知识。为了改进纯基于规则的系统,引入了一种冗余问题生成和排序的方法,该方法使用基于规则的方法从输入语句生成多个问题,然后使用监督学习的方法,利用术语抽取以及浅层语义分析对它们进行排序,仅仅保留排名靠前的问题,由此生成的问题相较于之前完全基于规则的方法有了很大的提升。
2021-03-26 19:59:11 523
原创 个人项目实训(一)——pytorch的安装
项目实训的第一步——pytorch的安装PyTorch相较于Tensorflow,更加简单轻便,适合新手。PyTorch的创始人说过他们创作的一个准则——他们想成为当务之急。
2021-03-24 09:18:33 162
原创 pip命令行安装第三方库报错问题解决
pip命令行安装第三方库报错问题解决废话写在前面:虽然python安装第三方库的方式有很多,但通过 命令行安装无疑是最简单方便的一种。享受过它的方便快捷之后再也不愿尝试其他方法,但是,安装了这么多次,有一个常见的错误想和大家分享一下。在安装第三方库的时候报错,说是要更新pip,如图所示:于是我乖乖输入命令 python -m pip install --upgrade pip 等待更新,...
2020-03-06 00:34:52 1665
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人