引入注意力机制

在模型中引入注意力机制

深度学习attention 机制是对人类视觉注意力机制的仿生,本质上是一种资源分配机制。生理原理就是人类视觉注意力能够以高分辨率接收于图片上的某个区域,并且以低分辨率感知其周边区域,并且视点能够随着时间而改变。换而言之,就是人眼通过快速扫描全局图像,找到需要关注的目标区域,然后对这个区域分配更多注意,目的在于获取更多细节信息和抑制其他无用信息。提高 representation 的高效性

在这里插入图片描述
.

Encoder-Decoder框架==sequence to sequence 条件生成框架

Encoder-Decoder框架,也被称为 sequence to sequence 条件生成框架,是一种文本处理领域的研究模式。常规的 encoder-decoder方法,第一步,将输入句子序列 X通过神经网络编码为固定长度的上下文向量C,也就是文本的语义表示;第二步,由另外一个神经网络作为解码器根据当前已经预测出来的词记忆编码后的上下文向量 C,来预测目标词序列,过程中编码器和解码器的 RNN 是联合训练的,但是监督信息只出现在解码器 RNN 一端,梯度随着反向传播到编码器 RNN 一端。使用 LSTM 进行文本建模时当前流行的有效方法[2]。

attention 机制的最典型应用是统计机器翻译。 给定任务,输入是“Echt”, “Dicke” and “Kiste”进 encoder,使用 rnn 表示文本为固定长度向量 h3。但问题就在于,当前 decoder 生成 y1 时仅仅依赖于最后一个隐层状态h3,也就是 sentence_embedding。那么这个 h3 必须 encode 输入句子中的全部信息才行。可实际上,传统Encoder-Decoder模型并不能达到这个功能。那 LSTM 不就是用来解决长期依赖信息问题的嘛?但事实上,长短期记忆网络仍然存在问题。

我们说,RNN在长期信息访问当前处理单元之前,需要按顺序地通过所有之前的单元。这意味着它很容易遭遇梯度消失问题。然后引入 LSTM,使用门控某种程度上解决这个问题。的确,LSTM、GRU 和其变体能学习大量的长期信息,但它们最多只能记住相对长的信息,而不是更大更长。

在这里插入图片描述
所以,我们来总结一下传统 encoder-decoder的一般范式及其问题:任务是翻译中文“我/爱/赛尔”到英文。传统 encoder-decoder 先把整句话输入进去,编码最后一个词“赛尔”结束之后,使用 RNN生成一个整句话的表示-向量 C,在条件生成时,当翻译到第 2个词“赛尔”的时候,需要退 1 步找到已经预测出来的h_1以及上下文表示 C, 然后 decode 输出。

.

从注意力均等到注意力集中

在传统Encoder-Decoder 框架下:由解码器根据当前已经预测出来的词记忆编码后的上下文向量 C,来预测目标词序列。 也就是说,不论生成那个词,我们使用的句子编码表示 C 都是一样的。换句话说,句子中任意单词对生成某个目标单词P_yi来说影响力都是相同的,也就是注意力均等。很显然这不符合直觉。直觉应该:我翻译哪个部分,哪个部分就应该把注意力集中于我的翻译的原文,翻译到第一个词,就应该多关注原文中的第一个词是什么意思。详见伪代码和下图:

P_y1 = F(E<start>,C),
P_y2 = F((E<the>,C)
P_y3 = F((E<black>,C)

在这里插入图片描述接下来观察上下两个图的区别:相同的上下文表示C会替换成根据当前生成单词而不断变化的Ci
在这里插入图片描述
文本翻译过程变为:

P_y1 = F(E<start>,C_0),
P_y2 = F((E<the>,C_1)
P_y3 = F((E<black>,C_2)

Encoder-Decoder框架的代码实现

class EncoderDecoder(nn.Module):
    """
    A standard Encoder-Decoder architecture. Base for this and many 
    other models.
    """
    def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
        super(EncoderDecoder, self).__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.src_embed = src_embed
        self.tgt_embed = tgt_embed
        self.generator = generator
        
    def forward(self, src, tgt, src_mask, tgt_mask):
        "Take in and process masked src and target sequences."
        return self.decode(self.encode(src, src_mask), src_mask,
                            tgt, tgt_mask)
    
    def encode(self, src, src_mask):
        return self.encoder(self.src_embed(src), src_mask)
    
    def decode(self, memory, src_mask, tgt, tgt_mask):
        return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt

考虑可解释性

不含注意力模型的传统encoder-decoder 可解释差:对于编码向量中究竟编码了什么信息,如何利用这些信息以及解码器特定行为的原因是什么我们并没有明确的认识。包含注意力机制的结构提供了一张相对简单的方式让我们了解解码器的推理过程以及模型究竟在学习什么内容,学到那些东西。尽管是一种弱可解释性,但是已经 make sense 了。

直面 attention 的核心公式
在这里插入图片描述

在预测目标语言的第i个词时,源语言第j个词的权重为 [公式] , 权重的大小可i以j 看做是一种源语言和目标语言的软对齐信息。

总结

使用 attention 方法实际上就在于预测一个目标词 yi 时,自动获取原句中不同位置的语义信息,并给每个位置信息的语义赋予的一个权重,也就是“软”对齐信息,将这些信息整理起来计算对于当前词 yi 的原句向量表示 c_i。

Attention 的 PyTorch应用实现

import torch
import torch.nn as nn

class BiLSTM_Attention(nn.Module):
    def __init__(self):
        super(BiLSTM_Attention, self).__init__()

        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        self.lstm = nn.LSTM(embedding_dim, n_hidden, bidirectional=True)
        self.out = nn.Linear(n_hidden * 2, num_classes)

    # lstm_output : [batch_size, n_step, n_hidden * num_directions(=2)], F matrix
    def attention_net(self, lstm_output, final_state):
        hidden = final_state.view(-1, n_hidden * 2, 1)   
        # hidden : [batch_size, n_hidden * num_directions(=2), 1(=n_layer)]
        attn_weights = torch.bmm(lstm_output, hidden).squeeze(2) 
        # attn_weights : [batch_size, n_step]
        soft_attn_weights = F.softmax(attn_weights, 1)
        
        # [batch_size, n_hidden * num_directions(=2), n_step] * [batch_size, n_step, 1] = [batch_size, n_hidden * num_directions(=2), 1]
        context = torch.bmm(lstm_output.transpose(1, 2), soft_attn_weights.unsqueeze(2)).squeeze(2)
        return context, soft_attn_weights.data.numpy() 
        # context : [batch_size, n_hidden * num_directions(=2)]

    def forward(self, X):
        input = self.embedding(X) 
        # input : [batch_size, len_seq, embedding_dim]
        input = input.permute(1, 0, 2) 
        # input : [len_seq, batch_size, embedding_dim]

        hidden_state = Variable(torch.zeros(1*2, len(X), n_hidden)) 
        # [num_layers(=1) * num_directions(=2), batch_size, n_hidden]
        cell_state = Variable(torch.zeros(1*2, len(X), n_hidden)) 

       
        output, (final_hidden_state, final_cell_state) = self.lstm(input, (hidden_state, cell_state))
        output = output.permute(1, 0, 2) 
        attn_output, attention = self.attention_net(output, final_hidden_state)
        return self.out(attn_output), attention 
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值