AutoDL-GPU租用平台使用教程

AutoDL是一个国内的GPU租用平台,最近使用了一下,体验感还是很nice的,所以写了篇博客来介绍一下该平台的具体使用方式,也可以当做一个教程来学习^_^

网址:AutoDL-品质GPU租用平台-租GPU就上AutoDL

一、进入平台页面

可以看到下面罗列出了各种GPU的租用价格,还算是比较亲民的。
在这里插入图片描述

二、创建实例

1.注册登录后进入控制台(页面右上角),点击“我的实例”,选择“租用新实例”:
在这里插入图片描述
2.注册登录后进入控制台(页面右上角),点击“我的实例”,选择“租用新实例”:
在这里插入图片描述
在页面最下方可以选择镜像,比如我用的是PyTorch 1.10 + Python 3.8 + Cuda 11.3:
在这里插入图片描述
点击创建之后我们就能在控制台的“我的实例”中看到已创建的实例:
在这里插入图片描述

三、使用JupyterLab+Vscode配置服务器远程连接

1.先用vscode安装remote-ssh扩展:
在这里插入图片描述
2.热键ctrl+shift+p呼出命令面板选择Remote-SSH Connect to Host:
在这里插入图片描述
3.选择Add New SSH Host然后输入登录信息和密码(命令最后若有空格需要删除):
在这里插入图片描述
登录信息和密码可以通过下方的“登录指令”查看:
在这里插入图片描述
具体操作参考帮助文档VSCode远程开发¶

四、开始训练

1.在JupyterLab中找到tmp文件夹进入后可以点击按钮上传.py文件和数据集等等,该操作结果会同步反映到vscode中,可以在本地十分方便地直接查看。
在这里插入图片描述
本地查看操作结果:
在这里插入图片描述
2.查看基本信息,包括资源管理器及终端输出:
在这里插入图片描述
3.本地点击运行即可开始训练。

四、运算时长对比

1.本地GTX 1650:
在这里插入图片描述
2.RTX 3090:
在这里插入图片描述

可以清楚地发现运算速度提升了三倍左右。

如果对于使用还有什么疑问可以直接评论留言~我会尽可能去解答。

### 如何租用 AutoDL GPU 并实现远程连接 #### 租用 AutoDL GPU 的流程 AutoDL 是一个提供便捷 GPU 资源租赁服务的平台,用户可以根据需求选择不同配置的 GPU 进行短期或长期租用。在平台上挑选合适的 GPU 配置时需要注意 CUDA 版本的要求[^1]。 为了确保资源的有效利用,在选择具体实例之前可以先查看各个地区的可用情况和价格信息。确认好所需的硬件条件后,点击“租用”,此时会弹出选项让用户决定采用按量付费模式还是购买固定周期的服务套餐;推荐选用前者以便灵活控制成本开销[^2]。 ```bash # 示例命令:创建一个新的GPU实例(假设通过CLI工具) autodl-cli create instance --type=gpu --region=cn-beijing --image=cuda-11.0 ``` #### 实现 VSCode 对 AutoDL 的远程连接 完成上述操作后即可获得一台已启动运行的新机器。接下来要做的就是建立本地开发环境与云端计算节点之间的安全通道: 安装 SSH 插件扩展到 Visual Studio Code 编辑器内,并按照提示输入目标主机地址、端口号、用户名及私钥文件路径等必要参数来构建链接关系。成功配对后的表现形式是在左侧栏会出现代表远端系统的图标按钮,允许浏览其目录结构并执行任意指令脚本。 ```json // .vscode/settings.json 中设置SSH连接配置项 { "remote.SSH.remotePlatform": { "your_remote_host_name": "linux" }, "terminal.integrated.shell.linux":"/bin/bash", } ```
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Polaris_T

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值