2019正睿Day2题解

博客内容涉及两道题目,一是关于stone的游戏,通过线性期望计算答案;二是memory问题,利用二分和贪心在期望情况下优化复杂度。还介绍了60分和100分的不同解法,并详细阐述了subset问题,通过质因数分解和容斥原理求解。
摘要由CSDN通过智能技术生成

1.stone

根据期望的线性性,答案 E(t) = P2 + P3 + · · · + Pn + 1,其中 Pi 是第 i 堆石子在第 1 堆之前被取走的概率。
考虑第 i 堆,可以发现其他堆都不会影响这两堆,因此相当于只要考虑只有这两堆的情况,因此概率即为 a i a 1 + a i \frac{ai}{a1 + ai} a1+aiai
因此答案即为 ∑ i = 2 n a i a 1 + a i + 1 \sum_{i=2}^{n}{\frac{ai}{a1 + ai}+1} i=2na1+aia

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值