<前言>
嗯,又是挂掉的一天呢。
扯点题外话:今天早上一来,发现人少了一堆,原本的位置都被占了,才知道我被卖了。那些人一声不吭跑去C班寻欢作乐,只留我们寥寥几人不明真相。原本一听网络流我也想溜了,结果一听,mjy老师是从零基础网络流开始讲的,不是很难理解,感觉血赚啊。但是一听C班讲树链剖分,又感觉血亏了。不慌,这波其实不亏。
咳咳,不扯了,开始愉快的网络流初步吧。
<第一版本>
还未更新过偶
<第二次更新>
8.2的dp听挂了,回来补坑
<正文>
网络流
一开始,m j y老师给了一个形象的例子:网络流就像液体在管道中流动的问题(效率?花费?)以及流水线加工,或许还有交通系统的一系列统一模型的例题
-
一个流网络 G = ( V , E ) G=(V,E) G=(V,E) 为一张满足以下条件的有向图:
- 1.每一条边有一个非负容量,即对于任意E中的 (u,v) , 有 c ( u , v ) ≥ 0 c(u,v)≥0 c(u,v)≥0
- 2.如果G中存在边 (u,v) ,那么不存在 (v,u) 。我们将图中不存在的边的容量定为0。
- 3.图中含有两个特殊节点:源 s 与汇 t。
-
一个流可看做是一个从u到v的映射,满足下面两条性质:
-
1.容量限制: 对于任意的u,v, 0 ≤ f ( u , v ) ≤ c ( u , v ) 0≤f(u,v)≤c(u,v) 0≤f(u,v)≤c(u,v)
-
2.流量守恒:对于任何非源汇的中间节点u,我们有
∑ v ∈ V f ( v , u ) = ∑ v ∈ V f ( u , v ) \sum_{v∈V}f(v,u)=\sum_{v∈V} f(u,v) ∑v∈Vf(v,u)=∑v∈Vf(u,v),即流入的流量等于流出的流量,因为节点不可储存流量,所以有进必有出。
-
那么对于这个玩意,其实也可以很具体的理解。比如说源点就是水龙头,汇点就是下水道。对于中间的每个点,相当于水流沿途的水槽或水管。水槽中可以储存的水是有限的,而且水管中不可储存水,所以流进多少就要流出多少。这就是容量限制和流量守恒了。
令人懵逼的是我并不清楚流量的大小取决于什么,问同学一个高冷的hxc dalao高冷的说“再见”,yjh dalao解释了一堆我没有听懂。现在总之,我知道流量取决于容量大小,取决于要求的两量,s与t。看你怎么跑了。但其实我到现在根本没有写过代码,不过是纸上谈兵罢了,写不来写不来。
最大流
最大流是网络流中一个重要的模型。多种算法都可实现。目前我知道有4个算法,但是老师上课讲了三个。Ford-Fulkerson算法、EK算法、Dinic算法。那么我就来瞎扯几句了。
顺带提一句,已经证明的一个性质:当流量图内没有增广路了,此时的流量图就是最大流了。所以找最大流的过程就是找增广路的过程。(隐藏的重点)
-
增广路:就是源点到汇点得路径。
-
残量网络:流量为原图容量-实际流量。对于网络G,其残量网络 G f G_f Gf与G的差别在于每条边的边容量修改为G中边容量减去当前流的该边流量。具体来说, c j ( u , v ) = c ( u , v ) − f ( u , v ) c_j(u,v) = c(u,v)-f(u,v) cj(u,v)=c(u,v)−f(u,v)。
另外,残量网络中还包含原图中所有边的反向边,容量等同于正向边在f中当前流量,用于“反悔”时将流送回起点: -
割:
- 为一个对于点集V的划分,将V划分为两个集合S与T,其中源点s在S中,汇点t在T中。对于一个流f而言,割(S,T)间的网络流定义为
f ( S , T ) = ∑ u ∈ S ∑ u ∈ T f ( u , v ) − ∑ u ∈ S ∑ u ∈ T f ( v , u ) f(S,T)=\underset{u∈S}{\sum}\underset{u∈T}{\sum} f(u,v)-\underset{u∈S}{\sum}\underset{u∈T}{\sum} f(v,u) f(S,T)=u∈S∑u∈T∑f(u,v)−u∈S∑u∈T∑f(v,u) - 割(S,T)的容量定义为:
c ( S , T ) = ∑ u ∈ S ∑ u ∈ T c ( u , v ) c(S,T)=\underset{u∈S}{\sum}\underset{u∈T}{\sum} c(u,v) c(S,T)=u∈S∑u∈T∑c(u,v)
- 对于一个网络而言,最小割为所有的割当中容量最小的那个。
- 为一个对于点集V的划分,将V划分为两个集合S与T,其中源点s在S中,汇点t在T中。对于一个流f而言,割(S,T)间的网络流定义为
-
引理1 : 增广后的网络的流量等于两个流流量直接相加。
证明:
请自行证明,不会的支持显然法
a. 是个流(两条性质) b. 流量相同 -
结论1:增广后流量增加。令 f p f_p fp为当前流f的残量网络中找到的一增广路,则
∣ f ↑ f p ∣ = ∣ f ∣ + ∣ f p ∣ > ∣ f ∣ \left |f↑f_p\right| =|f|+|f_p|>|f| ∣f↑fp∣=∣f∣+∣fp∣>∣f∣ 证明:显然 -
引理2:对于任意流f,任意割之间的网络流量不变。即
f ( S , T ) = ∣ f ∣ f(S,T)=|f| f(S,T)=∣f∣证明:由流量守恒知 -
结论2:任意流f的流量不超过任意割的容量。即:
∣ f ∣ ≤ c ( S , T ) |f|≤c(S,T) ∣f∣≤c(S,T)- 证明:由引理2显然。
- ∣ f ∣ = f ( S , T ) |f|=f(S,T) ∣f∣=f(S,T)
- = ∑ u ∈ S ∑ u ∈ T f ( u , v ) − ∑ u ∈ S ∑ u ∈ T f ( v , u ) =\underset{u∈S}{\sum}\underset{u∈T}{\sum} f(u,v)-\underset{u∈S}{\sum}\underset{u∈T}{\sum} f(v,u) =u∈S∑u∈T∑f(u,v)−u∈S∑u∈T∑f(v,u)
- ≤ ∑ u ∈ S ∑ u ∈ T f ( u , v ) ≤\underset{u∈S}{\sum}\underset{u∈T}{\sum} f(u,v) ≤u∈S∑u∈T∑f(u,v)
- ≤ ∑ u ∈ S ∑ u ∈ T c ( u , v ) ≤\underset{u∈S}{\sum}\underset{u∈T}{\sum} c(u,v) ≤u∈S∑u∈T∑c(u,v)
- = c ( S , T ) =c(S,T) =c(S,T)
-
定理1.最大流最小割定理:对于一个网络G,下面三个命题总是等价:
- 流 f f f是 G G G的最大流。
- 当前流 f 的残量网络 G f G_f Gf上不存在增广路。
- 存在某个割使得 ∣ f ∣ = c ( S , T ) |f| = c(S, T) ∣f∣=c(S,T)成立。由结论2可知,满足条件的割必定是最小割。
证明:
-
( 1 ) − > ( 2 ) (1) -> (2) (1)−>(2) 反证法,可由结论1直接导出矛盾。
-
( 2 ) − > ( 3 ) (2) -> (3) (2)−>(3) 构造点集S为s在残量网络上能够到达的点集 T = V − S T=V-S T=V−S,那么t一定在T中,进而(S,T)是一个割。
考虑S、T间的任意点对(u,v),如果(u,v)在原网络中存在,那么必定有 f ( u , v ) = c ( u , v ) f(u,v)=c(u,v) f(u,v)=c(u,v),否则该边会在残量网络中出现从而将u,v放入同一个连通块。
如果(v,u)在原网络中存在,那么必定有 f ( v , u ) = 0 f(v,u)=0 f(v,u)=0.
由引理2得, ∣ f ∣ = c ( S , T ) |f|=c(S,T) ∣f∣=c(S,T)。
-
( 3 ) − > ( 1 ) (3) -> (1) (3)−>(1),由结论2知, ∣ f ∣ < = c ( S , T ) |f|<= c(S,T) ∣f∣<=c(S,T),故当等号取到时,等式右边必然是最小割,等式左边必然是最大流。
Ford-Fulkerson
根据以上那个性质,所以只要找增广路就行了。本算法使用标记法寻找增广路。这个老师讲的时候我在思(zou)考(shen),没有听到到底怎么找。所以我盲猜一波直接dfs上乱搞,带上个标记别绕圈就行了,当然回溯的时候构建残量图,该变图中数据,根据这个每次寻找修改。
。。。
感觉这么草率结束不太好,那。。。搬一个过程?
1.开始dfs,从源点开始
2.暴力拓展,每次沿出边寻找
3.找到汇点就找到一条增广路
4.回溯,构造残量图
5.重复寻找,知道找不到增广路,即为最大流了
EK算法
- loding学习中
Ford-Fulkerson算法本身有一个十分致命的缺陷:当答案层数不深,但是无用信息太多时,dfs就明显表现出了缺陷。对于一些刁钻的数据,Ford-Fulkerson显然T飞。
既然无法第一时间找到浅层的答案,那为何不使用bfs搜索来实现呢?这就是EK算法了。
使用bfs可以很方便的确定是否存在增广路,并且可以找到一条进行构建残量图。
但当图十分稠密时,bfs的缺陷又表现出来了,状态数太多,复杂度上天,会T飞的
对于EK算法,老师有一个引理:
-
引理3 : 在EK算法中,令d(u)表示残量单位网络上从s到u的最短路距离。那么 对于V-{s}中的任意u,在每次增广后d(u)不降。
- 证明: 考虑两次相邻的增广前后的流,从中选取满足d(u)降的且距离 最近的u进行分析,并导出矛盾。
对于该算法时间复杂度的详细分析证明,在这里,某个最大流算法blog中的EK算法部分有详细介绍。更加详细的介绍也在这,还有代码解析。
结果是该算法复杂度 O ( n m 2 ) O(nm^2) O(nm2),适合稀疏图。
复杂度略证:
- 定理2: 在EK算法中,增广的次数是
O
(
n
m
)
O(nm)
O(nm)的。
- 证明: 考虑在残量网络的一条增广路中充当“瓶颈”的边,在该次增 广后必定会从残量网络中消失。考虑证明每条边最多消失 O ( n ) O(n) O(n)次。加 上一次增广必定会有至少一条这样的边,故最多增广 O ( n m ) O(nm) O(nm)次。
- 故EK算法的总复杂度为 O ( n m 2 ) O(nm^2) O(nm2)
看的出来,其实EK算法的效率其实并没有优秀到哪里去,数据范围稍稍大一点极限级别数据就会使其崩溃。接下来要介绍的几个算法效率都在 O ( n 2 m ) O(n^2m) O(n2m)左右更优的有 O ( n 2 m ) O(n^2\sqrt m) O(n2m),是十分优秀的,回顾最大流的历史,这几个才是现代信息化以来的成就,在这之前该算法效率一直在EK的水平。
Dinic、SAP、HLPP算法都要用到分层网络。
- 可行边:在残量网络中,若两个端点间的最短路恰好差1,就称之为可行边。
- 可行网络:由所有可行边构成的图(最短路图),称为可行网络。
- 阻塞流:在可行网络上的无法再扩充流量的流,称为阻塞流,注意不必是残量网络的 最大流。
- 单位容量网络 :所有的存在的边容量均为1的网络
Dinic
说说叫分层网络,名字花里胡哨的,实际上就是bfs然后打一个标记,记录距离源点的距离,这就是所谓的层数了。
从源点出发,bfs知道找到汇点,此时搜索全部停止,不再更新外部节点。将处理过的所有节点构成一个分层网络。
接着用dfs深搜计算累计处理增广路上的节点以及汇点。这样每次处理一遍,每次先一遍bfs找到增广路,在一遍dfs处理。每个这样的操作称为一个阶段。若干个阶段后,直到找不到增广路了,便完成了。
说实话我算法盲,根本发现不了这几个算法有什么区别(|||o_o)。
但是Dinic的优势在于,bfs处理出的很多增广路,可以一次性被dfs处理,这就大大提高李效率。以下是Dinic执行步骤,来自一篇转载的博客:
(1)初始化容量网络和网络流。
(2)构造残留网络和层次网络,若汇点不再层次网络中,则算法结束。
(3)在层次网络中用一次DFS过程进行增广,DFS执行完毕,该阶段的增广也执行完毕。
(4)转步骤(2)。
这个算法老师上课重点讲了,不过她主要是在证明结论计算复杂度什么的,听得我快睡了 。
课后就重新整理了一遍
-
引理4 : dinic在单位容量网络中至多增广 O ( m i n ( E 1 2 , V 2 3 ) ) O(min(E^{\frac{1}{2}},V^{\frac{2}{3}})) O(min(E21,V32))次
-
证明:
-
a. 增广次数不超过 O ( E 1 2 ) O(E^{\frac{1}{2}}) O(E21)
• 分别考虑 d ( t ) < = E 1 2 d(t)<=E^{\frac{1}{2}} d(t)<=E21和 d ( t ) > = E 2 3 d(t)>=E^{\frac{2}{3}} d(t)>=E32时的情况 • 前者由于阻塞流增广后的性质,每次自然会增, 因此只需要迭代不超过 E 1 2 E^{\frac{1}{2}} E21次就可到达后一 种情形。
• 后者考虑层之间的割。由于存在超过 E 1 2 E^{\frac{1}{2}} E21层, 因而必有两层间边数不超过 E 1 2 E^{\frac{1}{2}} E21,由此可推 出残量网络最大流不超过 E 1 2 E^{\frac{1}{2}} E21。由于每次增 广必会增加流量,故只需增广不超过 E 1 2 E^{\frac{1}{2}} E21次。
-
b. 增广次数不超过 O ( V 2 3 ) O(V^{\frac{2}{3}}) O(V32)
• 同理,大家自己思考一下吧。
• 提示:考虑连续的两层之间的节点个数均不超 V 1 3 V^{\frac{1}{3}} V31前后的情况。
-
-
结论3 : dinic在单位容量网络中寻找阻塞流可达 O ( E ) O(E) O(E)复杂度。
证明:依然可以分两部分
• Dfs调用 — 每个点所在增广路数量之和
• For循环 — 每条边所在增广路数量之和因此,在单位容量网络当中,dinic的时间复杂度可达 O ( E × m i n ( E 1 2 , V 2 3 ) ) O(E\times min(E^{\frac{1}{2}},V^{\frac{2}{3}})) O(E×min(E21,V32))
SAP、HLPP:
hehe,你指望我讲这个?告诉你不可能的,老师没讲啊我也不会。
不过可以给出优质blog的地址:
在这里
说说只有四个算法,但是它讲了5个,还带有例题以及解析。十分不错。
<后记>
列举一下今天的资源网址吧
Dinic:
-
blog:
- https://blog.csdn.net/qq_21120027/article/details/51291314
-
资源:
-
https://www.arl.wustl.edu/~jst/cse/542/text/sec19.pdf
-
http://courses.csail.mit.edu/6.854/16/Notes/n10-blocking_flows.html
-
5种算法:https://blog.csdn.net/yjr3426619/article/details/82808303
markdown使用:https://blog.csdn.net/qq_18150255/article/details/88040858
呼,还有一个费用流,有时间再说吧(我看不可能了)