给定一个二叉树,我们在树的节点上安装摄像头。
节点上的每个摄影头都可以监视其父对象、自身及其直接子对象。
计算监控树的所有节点所需的最小摄像头数量。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int minCameraCover(TreeNode root) {
int[] result = new int[1];
if(transvel(root,result) == 0) {
result[0] ++;
}
return result[0];
}
public int transvel(TreeNode root, int[] result) {
if(root == null) return 2;
int left = transvel(root.left, result);
int right = transvel(root.right, result);
if(left == 2 && right == 2) return 0;
if(left == 0 || right == 0) {
result[0]++;
return 1;
}
if(left == 1 || right ==1) return 2;
return 0;
}
}
这道题配得上困难难度,需要考虑的因素很多。
①首先需要考虑到的是,遍历的顺序,如何才能节省最少的灯,答案是叶子节点不放灯,因此对于遍历顺序,首推的是后序遍历,先处理左右节点,在处理中心节点,很符合本题意思。
②然后是对于节点状态的描述,用0表示节点未覆盖,用1表示节点已放灯,用2表示节点已被覆盖。
③根据子节点获取中心节点状态。需要分四种状态讨论,这四种情况是逐渐对于所有情况进行排出的。
(1)左右节点均已覆盖,则中心节点必为2;
(2)左或右节点未覆盖,则中心节点必为1,并且结果+1;
(3)左或右节点已有灯,则中心节点必为2;
(4)若根节点为未覆盖,则结果必须加一。