Numpy使用总结

Numpy是Python中用于数值计算的重要库,提供多维数组对象、数学函数及矩阵运算。它包括全0和全1数组创建、数组属性查询、维度操作、数组合并与拆分、基本运算和统计函数等功能,广泛应用于数据处理和科学计算领域。
摘要由CSDN通过智能技术生成

Numpy简介

Numpy 的英文全称为 Numerical Python,指Python 面向数值计算的第三方库。Numpy 的特点在于,针对 Python 内建的数组类型做了扩充,支持更高维度的数组和矩阵运算,以及更丰富的数学函数。Numpy 是 Scipy.org 中最重要的库之一,它同时也被 Pandas,Matplotlib 等我们熟知的第三方库作为核心计算库。
NumPy(Numeric Python)提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大型金融公司使用,以及核心的科学计算组织如:Lawrence Livermore,NASA用其处理一些本来使用C++,Fortran或Matlab等所做的任务。
Numpy包括了:1、一个强大的N维数组对象Array;2、比较成熟的(广播)函数库;3、用于整合C/C++和Fortran代码的工具包;4、实用的线性代数、傅里叶变换和随机数生成函数。Numpy和稀疏矩阵运算包scipy配合使用更加方便。

1. 数组的创建(创建全0数组,全1数组,随机数数组)

image.png

2. 数组的属性(查看数组的维度,数组元素的个数)

image.png

3. 数组的维度操作(将数组的行变列,返回最后一个元素,返回第2到第4个元素,返回逆序的数组)

image.png

4. 数组的合并(数组的水平合并,垂直合并,深度合并)

image.png

5. 数组的拆分(数组的水平拆分,垂直拆分,深度拆分)

image.png

6. 数组运算(与常的四则运算,与数组的四则运算,判断数组是否相等)

image.png

7. 数组的常用函数(数组所有元素的和、积、平均值、最大值、最小值、元素替换、方差、标准差)

image.png

实验总结

源代码文件数据处理之Numpy.ipynb

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梦码城

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值