数据分析中的各类分析模型

RFM模型

RFM模型是一种经典的客户关系管理和市场营销工具,用于衡量客户价值和预测客户行为。它通过三个关键指标对客户进行评估和细分,从而帮助企业识别出最有价值的客户、潜在的优质客户以及可能需要采取行动挽留的客户。这三个指标分别是:

  • R (Recency) -最近购买时间: 表示客户最近一次交易发生至今的时间间隔。这个指标反映了客户与企业互动的时效性,通常认为,最近有购买行为的客户更可能对企业的商品或服务保持兴趣,且再次购买的可能性较高。在RFM 分析中,最近购买的客户得分较高。
  • F (Frequency) -购买频率: 指在一定时间段内客户购买的次数。购买频率高的客户通常被认为是忠诚度较高的客户,他们对企业的品牌认同度强,未来继续购买的可能性较大。在RFM 分析中,购买次数多的客户得分较高。
  • M (Monetary) -消费金额: 衡量客户在指定时间段内累计消费的金额。消费金额高的客户通常为企业贡献了较大的收入,被视为高价值客户。在 RFM分析中,消费总额高的客户得分较高。

通过收集并计算每个客户的 R、F、M 值,企业可以构建一个三维空间,每个客户在这个空间中占据一个特定的位置,反映出他们的购买行为特征。

接下来,企业可以根据实际需求设定阈值或采用统计方法(如聚类分析)对客户进行分群,形成诸如“重要价值客户”、“潜力客户”、“一般客户”、“低价值客户”或“风险客户”等不同类别。这些分类有助于企业制定精细化的营销策略,如:

  • 对高价值客户实施保留策略,提供 VIP 服务、优先优惠或个性化推荐,以维持其满意度和忠诚度。
  • 对潜力客户进行有针对性的促销活动或增加沟通频率,激发他们的购买意愿,提升其消费水平。
  • 对一般客户进行常规营销,适时推送相关信息或适度激励,以提高其购买频率或金额。
  • 对低价值或风险客户分析原因,可能需要重新定位产品、优化服务或采取唤醒策略,以防止客户流失。

RFM模型因其简洁明了、易于理解且实用性强的特点,被广泛应用于零售、电商、金融、电信等行业,以及会员制服务、订阅业务等多种商业场景中,作为客户细分、客户生命周期管理、精准营销、客户价值评估等任务的有效工具。实际应用中,RFM模型的具体参数设置(如时间段的选择、评分规则的确立等)会根据企业的具体业务特点和目标进行定制化调整。

RFM模型示意图

用户价值分类R值F值M值
重要价值用户111
重要唤回用户011
重要深耕用户101
重要挽留用户001
潜力用户110
新用户100
一般维持用户010
流失用户000

二八模型(帕累托分析/ABC分类法)

概念

1897年,意大利经济学家帕累托,在抽样调查的数据中发现,社会上20%的人拥有80%的财富。后来,人们发现这种「关键少数」的现象非常普遍,比如说:20%的原因导致80%的问题,20%的产品贡献80%的业绩,20%的员工贡献80%的业绩,20%的客户贡献80%的业绩,应用到企业中时,意味着80%的利润通常来自于20%的项目或重要客户。

以上模型就是经典的帕累托模型,也称为二八法则或帕累托原则,是关于效率与分配的判断方法,常用于商品的库存管理分析中。 这个模型表明,在任何大系统中,约80%的结果是由该系统中约20%的变量产生的。帕累托模型的应用可以帮助企业对商品或产品进行分类,按照投入产出比的优先次序原则,将资源尽量投入到头部产品当中,以期产生最大的效益。把产品或业务分为A、B、 C三类,用于分清业务的重点和非重点,反映出每类产品的价值对库存、销售、成本等总价值的影响,从而实现差异化策略和管理。

ABC分析法

案例讲解

已知不同品类商品的销售额信息,需分析商品销售量情况有重点的管理商品。

分析思路:

1)计算不同品类商品累计销售额及其占比,
2)按照累计销售占比将品类分成几类,将品类按照累计销售额占比:0-70% 1类;70%-90% 2类;90%-100% 3类

结果展示

结果展示

用户画像

用户画像是指根据用户的属性、行为、需求等信息而抽象出的一个标签化的用户模型。它是对用户信息进行标签化的过程,以方便计算机处理。用户画像的作用主要表现在以下几个方面:

  • 精准营销:通过用户画像,企业可以了解目标用户的需求和偏好,从而制定更精准的营销策略,提高营销效果。
  • 个性化推荐:基于用户画像,可以为用户提供个性化的产品和服务推荐,提升用户满意度和忠诚度。
  • 产品优化:通过分析用户画像,企业可以了解用户的需求和痛点,针对性地优化产品功能和设计,提高产品的用户体验。
  • 市场分析:用户画像可以帮助企业了解市场的整体趋势和用户需求变化,从而指导企业的市场决策。

因此,用户画像在电商、互联网、金融等各个领域都得到了广泛的应用。对于电商平台而言,建立准确的用户画像有助于更好地理解用户需求,提升用户体验,实现精准营销和个性化服务。

描述电商用户画像维度:

  • 基础信息维度:包括用户的年龄、性别、地域、职业等基础信息,这些信息有助于了解用户的基本特征和背景。
  • 购买行为维度:包括用户的购买频率、购买时间、购买商品种类等,这些信息可以揭示用户的购买习惯和购买力。

购物篮分析

大家应该都听过这样一个经典案例:超市里经常会把婴儿的尿不湿和啤酒放在一起售卖,原因是经过数据分析发现,买尿不湿的家长以父亲居多,如果他们在买尿不湿的同时看到了啤酒,将有很大的概率购买,从而提高啤酒的销售量。

这种通过研究用户消费数据,将不同商品之间进行关联,并挖掘二者之间联系的分析方法,就叫做商品关联分析法,即购物篮分析,通过「支持度」、「置信度」、「提升度」三个指标判断商品见的关联。

  • 支持度:是指A商品和B商品同时被购买的概率,或者说某个商品组合的购买次数占总商品购买次数的比例。支持度说明了这条规则在所有事务中有多大的代表性,显然支持度越大,关联规则越重要。
    • 比如今天共有10笔订单,其中同时购买牛奶和面包的次数是6次,那么牛奶+面包组合的支持度就是6/10=60%
  • 置信度:指购买A之后又购买B的条件概率,简单说就是因为购买了A所以购买了B的概率
    • 比如今天共有10笔订单,其中购买A的次数是8,同时购买A和B的次数是6,则其置信度是6/8=75%
  • 提升度:先购买A对购买B的提升作用,用来判断商品组合方式是否具有实际价值,是看组合商品被购买的次数是否高于单独商品的购买次数,大于1说明该组合方式有效,小于1则说明无效。
    • 比如今天共有10笔订单,购买A的次数是8,购买B的次数是6,购买A+B的次数是6,那么提升度是0.6/(0.8*0.6)>1,因此A+B的组合方式是有效的。

结果展示

波士顿矩阵

波士顿矩阵通过销售增长率(反映市场引力的指标)和市场占有率(反映企业实力的指标)来分析决定企业的产品结构。

波士顿矩阵将产品类型分为四种,如下图所示:

结果展示

转化漏斗分析

概念

转化漏斗模型,是分析用户使用某项业务时,经过一系列步骤转化效果的方法。

转化分析可以分析多种业务场景下转化和流失的情况,不仅找出产品潜在问题的位置,还可以定位每个环节流失用户,进而定向营销促转化。

解决哪些问题:

比如搜索商品——>浏览商品——>商品下单——>交易付款,每个过程的转化率有多少?两个推广渠道带来不同的用户,哪个渠道的注册转化率高?哪些客服下单转化情况最好?

阶段转化

对于需要进行逐级转化的平台运营,首先可以通过用户转化漏斗图进行宏观的流程转化数据分析找出目前阶段最需要优化的运营环节和平台,有效地进行针对性治理,最终提高整体平台用户转化率。付款转化率=付款人数/下单人数

结果展示
分析结论:

  • 用户从浏览商品行为到添加购物车行为这一流程,其转化率为51.22%,反映出该平台的商品介绍、图片描述等对用户有较强的吸引力;
  • 添加购物车到下单的转化率,其转化率高达99.66%;
  • 但付款的转化率仅 50.34%,这是一个值得反思的转化节点
  • 通过数据分析猜测该平台商铺支付渠道不完善,需要增加例如支付宝、微信等快捷支付渠道,降低平台因为没有提供用户习惯性的支付渠道而导致用户放弃购买行为的几率。

事件转化

通常指的是平台或商铺通过一系列的运营推广活动以及由于公共事件影响所带来的额外价值,例如网络营销总的SEO关键词投放、折扣促销活动、邮件营销等等效果跟踪。通常可关注于营销渠道转化率等指标进行活动的推广营销效果评估

结果展示
分析结论:

  • 目前平台的转化率最高的渠道主要是基础上线工作、轮台、贴吧推广、微信推广、品牌基础推广几个渠道。
  • 根据基础线上工作渠道随时间的转化率走势情况,可以推测出平台在2015年12月(因为从2015年12月用户的下单转化率有所下降,一般用户在知道近期即将有促销活动的时候,往往会收藏商品从而产生延迟消费,所以活动开始前的时间转化率会降低)左右发布了即将要开始的商品促销活动,同时活动日期大概在2016年1月左右(转化率提升明显),属于跨年的大型活动促销,同时也取得了较好的活动效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值