数据分析之AB测试---实操常见问题及处理方法

数据分析之AB测试---实操常见问题及处理方法

第一节 MDE(Minimum Detectable Effect)—最小可探测效应

在AB实验实操中,我们会常遇到两个东西:

  • 其一:在计算最小样本量的时候有个参数:目标指标预期提升的最小幅度
  • 其二:在实际实验跑了一段时间后我们常常会计算得到一个指标「检验灵敏度」,它用来判断在当前条件下能有效检出目标指标的diff幅度

这两点好像都有人称之为MDE,不难发现好像对于这个术语的含义存在一定的混淆,该如何更好的去区分、理解这两点,先说自己认为的结论:

  • 在样本量计算中涉及到的参数「目标指标预期提升的最小幅度」,称之为目标指标预期提升值。
  • 在实验进行中,我们会计算一个指标:检验灵敏度,称之为MDE。

第二节 如何理解检验灵敏度(MDE)

一句话概述:在AB实验中,检验灵敏度(MDE)是指在给定的置信水平和统计功效下,实验能够检测到的最小的效应大小,它帮助我们理解实验是否有足够的能力去检测出实际的效果。

例如:当实验结果不显著时,排查不显著原因:计算MDE,如果MDE大于预期(

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值