PointNet++论文介绍和代码实现

一、PointNet++论文详细介绍

1. 背景与动机

  • 点云数据的重要性:在3D计算机视觉和图形学中,点云是一种常见的数据表示方式,广泛应用于3D扫描、自动驾驶、机器人导航等领域。
  • PointNet的局限性:PointNet是处理点云的开创性工作,但由于其直接对全局点集进行特征学习,无法有效捕捉局部特征,尤其是在处理具有复杂几何结构的场景时。

2. 主要贡献

  • 引入层次化的特征学习架构:PointNet++通过构建层次化的神经网络架构,逐步捕捉从局部到全局的特征。
  • 局部区域特征学习:利用度量空间中的距离信息,将点云划分为局部区域,在这些区域内应用PointNet,学习局部特征。
  • 自适应区域大小:考虑到点云的非均匀采样问题,PointNet++引入了多尺度特征聚合和自适应采样策略。

3. 网络架构

整个网络主要由两种模块构成:Set Abstraction(SA)层Feature Propagation(FP)层

3.1 Set Abstraction(SA)层

  • 目的:对点云进行下采样和特征提取,逐步构建层次化的特征表示。
  • 步骤
    1. 采样(Sampling):使用FPS(Farthest Point Sampling)算法,从输入点集选取代表性点,形成下一级的点集。
    2. 分组(Grouping):对于每个采样点,基于一定的半径或K近邻,在原始点集中找到其邻域点。
    3. 特征提取(PointNet Layer):在每个局部邻域内,使用PointNet对局部点集进行特征提取,生成局部特征。

3.2 Feature Propagation(FP)层

  • 目的:在点云上进行特征上采样,将低分辨率的特征逐步传播回原始高分辨率的点集。
  • 步骤
    1. 插值(Interpolation):使用加权插值方法,将上一级的特征映射到更多的点上。
    2. 特征融合:将插值得到的特征与对应级别的特征进行拼接,形成丰富的点特征表示。
    3. MLP映射:通过多层感知机(MLP)对融合后的特征进行非线性变换。

4. 关键技术细节

  • 多尺度特征聚合:为了解决点云密度不均的问题,PointNet++在SA层中采用多种尺度的邻域,提取不同尺度下的特征,然后进行融合。
  • 自适应采样密度:在稀疏区域和密集区域,采用不同的采样策略,确保特征提取的有效性

5. 实验结果

  • 分类任务:在ModelNet40数据集上,PointNet++取得了比PointNet更高的分类准确率。
  • 分割任务:在ShapeNet和S3DIS等数据集上,PointNet++在语义分割和实例分割任务中表现出色。

6. 总结

PointNet++通过引入层次化的特征学习框架,克服了PointNet无法捕捉局部特征的缺陷,实现了对点云数据更深入和细致的理解。

二、使用Python和PyTorch实现PointNet++

下面将介绍如何使用Python和PyTorch从零开始实现PointNet++,包括关键模块的代码示例。

1. 环境准备

  • Python版本:建议使用Python 3.7或以上版本。
  • PyTorch版本:1.7或以上版本。
  • 其他库:numpy、torchvision、h5py等

pip install torch torchvision numpy h5py

2. 关键模块实现

2.1 Farthest Point Sampling(FPS)

FPS用于从点云中选择具有代表性的点。

import torch

def farthest_point_sampling(xyz, npoint):
    """
    输入:
        xyz: 输入点云,形状为[B, N, 3]
        npoint: 采样点的数量
    输出:
        centroids: 采样点的索引,形状为[B, npoint]
    """
    device = xyz.device
    B, N, _ = xyz.shape
    centroids = torch.zeros(B, npoint, dtype=torch.long).to(device)
    distance = torch.ones(B, N).to(device) * 1e10
    batch_indices = torch.arange(B, dtype=torch.long).to(device)

    # 随机选择初始点
    farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device)
    for i in range(npoint):
        centroids[:, i] = farthest
        centroid = xyz[batch_indices, farthest, :].view(B, 1, 3)
        dist = torch.sum((xyz - centroid) ** 2, -1)
        mask = dist < distance
        distance[mask] = dist[mask]
        farthest = torch.max(distance, -1)[1]
    return centroids

2.2 球形邻域查询(Ball Query)

在指定半径内查找每个采样点的邻域点。

def ball_query(radius, nsample, xyz, new_xyz):
    """
    输入:
        radius: 邻域半径
        nsample: 每个邻域的最大点数
        xyz: 所有点的坐标,形状为[B, N, 3]
        new_xyz: 采样点的坐标,形状为[B, npoint, 3]
    输出:
        group_idx: 邻域内点的索引,形状为[B, npoint, nsample]
    """
    device = xyz.device
    B, N, _ = xyz.shape
    _, S, _ = new_xyz.shape
    group_idx = torch.arange(N, dtype=torch.long).to(device).view(1, 1, N).repeat([B, S, 1])
    sqrdists = torch.sum((new_xyz.unsqueeze(2) - xyz.unsqueeze(1)) ** 2, -1)
    group_idx[sqrdists > radius ** 2] = N
    group_idx = group_idx.sort(dim=-1)[0][:, :, :nsample]
    group_first = group_idx[:, :, 0].view(B, S, 1).repeat([1, 1, nsample])
    mask = group_idx == N
    group_idx[mask] = group_first[mask]
    return group_idx

2.3 特征提取(PointNet Layer)

在每个局部邻域内,使用共享的MLP进行特征提取。

import torch.nn as nn

class PointNetSetAbstraction(nn.Module):
    def __init__(self, npoint, radius, nsample, in_channel, mlp):
        super(PointNetSetAbstraction, self).__init__()
        self.npoint = npoint
        self.radius = radius
        self.nsample = nsample
        
        layers = []
        last_channel = in_channel + 3  # 加上坐标维度
        for out_channel in mlp:
            layers.append(nn.Conv2d(last_channel, out_channel, 1))
            layers.append(nn.BatchNorm2d(out_channel))
            layers.append(nn.ReLU())
            last_channel = out_channel
        self.mlp = nn.Sequential(*layers)
        
    def forward(self, xyz, points):
        """
        输入:
            xyz: 原始点云坐标,形状为[B, N, 3]
            points: 输入特征,形状为[B, N, D],如果没有特征则为None
        输出:
            new_xyz: 下采样点的坐标,形状为[B, npoint, 3]
            new_points: 下采样点的特征,形状为[B, npoint, mlp[-1]]
        """
        B, N, C = xyz.shape
        S = self.npoint
        # 1. 采样
        fps_idx = farthest_point_sampling(xyz, S)
        new_xyz = index_points(xyz, fps_idx)
        # 2. 分组
        idx = ball_query(self.radius, self.nsample, xyz, new_xyz)
        grouped_xyz = index_points(xyz, idx) - new_xyz.unsqueeze(-2)
        if points is not None:
            grouped_points = index_points(points, idx)
            grouped_points = torch.cat([grouped_xyz, grouped_points], dim=-1)
        else:
            grouped_points = grouped_xyz
        # 3. 特征提取
        grouped_points = grouped_points.permute(0, 3, 2, 1)  # [B, D+C, nsample, npoint]
        new_points = self.mlp(grouped_points)
        new_points = torch.max(new_points, 2)[0]
        new_points = new_points.permute(0, 2, 1)  # [B, npoint, mlp[-1]]
        return new_xyz, new_points

2.4 特征传播(Feature Propagation)

用于将特征上采样,恢复到高分辨率的点集。

class PointNetFeaturePropagation(nn.Module):
    def __init__(self, in_channel, mlp):
        super(PointNetFeaturePropagation, self).__init__()
        layers = []
        last_channel = in_channel
        for out_channel in mlp:
            layers.append(nn.Conv1d(last_channel, out_channel, 1))
            layers.append(nn.BatchNorm1d(out_channel))
            layers.append(nn.ReLU())
            last_channel = out_channel
        self.mlp = nn.Sequential(*layers)
        
    def forward(self, xyz1, xyz2, points1, points2):
        """
        输入:
            xyz1: 上一级的点坐标,形状为[B, N, 3]
            xyz2: 下一级的点坐标,形状为[B, S, 3]
            points1: 上一级的点特征,形状为[B, N, D1]
            points2: 下一级的点特征,形状为[B, S, D2]
        输出:
            new_points: 插值后的特征,形状为[B, N, mlp[-1]]
        """
        B, N, _ = xyz1.shape
        _, S, _ = xyz2.shape

        # 如果下一级没有特征,则直接插值
        if S == 1:
            interpolated_points = points2.repeat(1, N, 1)
        else:
            dists = square_distance(xyz1, xyz2)
            dists, idx = dists.sort(dim=-1)
            dists, idx = dists[:, :, :3], idx[:, :, :3]  # 取最近的3个点
            dist_recip = 1.0 / (dists + 1e-8)
            norm = torch.sum(dist_recip, dim=2, keepdim=True)
            weight = dist_recip / norm
            interpolated_points = torch.sum(index_points(points2, idx) * weight.unsqueeze(-1), dim=2)
        if points1 is not None:
            new_points = torch.cat([points1, interpolated_points], dim=-1)
        else:
            new_points = interpolated_points
        new_points = new_points.permute(0, 2, 1)
        new_points = self.mlp(new_points)
        new_points = new_points.permute(0, 2, 1)
        return new_points

2.5 完整的PointNet++网络

将上述模块组合,构建PointNet++模型。

class PointNetPlusPlus(nn.Module):
    def __init__(self, num_classes):
        super(PointNetPlusPlus, self).__init__()
        self.sa1 = PointNetSetAbstraction(npoint=1024, radius=0.1, nsample=32, in_channel=0, mlp=[32, 32, 64])
        self.sa2 = PointNetSetAbstraction(npoint=256, radius=0.2, nsample=32, in_channel=64, mlp=[64, 64, 128])
        self.sa3 = PointNetSetAbstraction(npoint=64, radius=0.4, nsample=32, in_channel=128, mlp=[128, 128, 256])
        self.sa4 = PointNetSetAbstraction(npoint=16, radius=0.8, nsample=32, in_channel=256, mlp=[256, 256, 512])
        
        self.fp4 = PointNetFeaturePropagation(in_channel=768, mlp=[256, 256])
        self.fp3 = PointNetFeaturePropagation(in_channel=384, mlp=[256, 256])
        self.fp2 = PointNetFeaturePropagation(in_channel=320, mlp=[256, 128])
        self.fp1 = PointNetFeaturePropagation(in_channel=128, mlp=[128, 128, 128])
        
        self.classifier = nn.Sequential(
            nn.Conv1d(128, 128, 1),
            nn.BatchNorm1d(128),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Conv1d(128, num_classes, 1)
        )
        
    def forward(self, xyz):
        B, N, C = xyz.shape
        l0_points = None
        l0_xyz = xyz
        
        # Set Abstraction layers
        l1_xyz, l1_points = self.sa1(l0_xyz, l0_points)
        l2_xyz, l2_points = self.sa2(l1_xyz, l1_points)
        l3_xyz, l3_points = self.sa3(l2_xyz, l2_points)
        l4_xyz, l4_points = self.sa4(l3_xyz, l3_points)
        
        # Feature Propagation layers
        l3_points = self.fp4(l3_xyz, l4_xyz, l3_points, l4_points)
        l2_points = self.fp3(l2_xyz, l3_xyz, l2_points, l3_points)
        l1_points = self.fp2(l1_xyz, l2_xyz, l1_points, l2_points)
        l0_points = self.fp1(l0_xyz, l1_xyz, l0_points, l1_points)
        
        # Classification head
        x = l0_points.permute(0, 2, 1)  # [B, D, N]
        x = self.classifier(x)
        x = x.permute(0, 2, 1)  # [B, N, num_classes]
        return x

3. 模型训练与测试

3.1 数据集准备

可以使用公开的点云数据集,如ModelNet40或自制数据集。需要将点云数据处理为适合输入网络的格式。

3.2 损失函数与优化器

import torch.optim as optim

# 定义交叉熵损失函数
criterion = nn.CrossEntropyLoss()
# 定义优化器
optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=1e-4)

3.3 训练循环

for epoch in range(num_epochs):
    model.train()
    for data, label in train_loader:
        data = data.to(device)
        label = label.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output.view(-1, num_classes), label.view(-1))
        loss.backward()
        optimizer.step()
    # 验证模型
    model.eval()
    # ...(验证代码)

4. 注意事项

  • GPU加速:确保将数据和模型都移动到GPU上,以加速训练。
  • 数据增强:在训练过程中,可以对点云进行随机旋转、平移、缩放等操作,增强模型的泛化能力。
  • 超参数调整:根据具体的数据集和任务,调整网络的层数、每层的点数、半径等超参数。

5. 参考资源

以下是 PointNet++ 加注意力机制改进的代码示例: ```python import tensorflow as tf def get_attention_weight(x, y, dim): """ 获取注意力权重 :param x: 输入特征向量 :param y: 相关特征向量 :param dim: 特征向量维度 :return: 注意力权重 """ w = tf.Variable(tf.random_normal([dim, 1], stddev=0.1), name='attention_w') b = tf.Variable(tf.zeros([1]), name='attention_b') z = tf.matmul(tf.concat([x, y], axis=1), w) + b a = tf.nn.softmax(z) return a def get_attention_feature(x, y, dim): """ 获取注意力特征向量 :param x: 输入特征向量 :param y: 相关特征向量 :param dim: 特征向量维度 :return: 注意力特征向量 """ a = get_attention_weight(x, y, dim) f = tf.concat([x, y], axis=1) * a return f def pointnet_plus_plus_attention(x, k, mlp, is_training): """ PointNet++ 加注意力机制改进 :param x: 输入点云数据,shape为(batch_size, num_points, num_dims) :param k: k-NN 算法中的 k 值 :param mlp: 全连接网络结构 :param is_training: 是否为训练 :return: 输出结果,shape为(batch_size, num_points, mlp[-1]) """ num_points = x.get_shape()[1].value num_dims = x.get_shape()[-1].value with tf.variable_scope('pointnet_plus_plus_attention', reuse=tf.AUTO_REUSE): # 首先进行 k-NN 建模,找到每个点的 k 个最近邻点 # 根据每个点与其 k 个最近邻点的距离,计算点之间的权重 dists, idxs = knn(k, x) # 将点特征和最近邻点特征进行拼接 grouped_points = group(x, idxs) grouped_points = tf.concat([x, grouped_points], axis=-1) # 对拼接后的特征进行全连接网络处理 for i, num_output_channels in enumerate(mlp): grouped_points = tf_util.conv1d(grouped_points, num_output_channels, 1, 'mlp_%d' % i, is_training=is_training) # 对每个点和其最近邻点进行注意力权重计算 attention_points = [] for i in range(num_points): center_point = tf.expand_dims(tf.expand_dims(x[:, i, :], axis=1), axis=1) neighbor_points = tf.gather_nd(grouped_points, idxs[:, i, :], batch_dims=1) attention_feature = get_attention_feature(center_point, neighbor_points, num_dims * 2) attention_points.append(tf.reduce_sum(attention_feature, axis=1, keep_dims=True)) # 将注意力特征向量拼接起来,作为输出结果 output = tf.concat(attention_points, axis=1) return output ``` 在这个代码中,我们使用了 `get_attention_weight` 函数来获取注意力权重,并使用 `get_attention_feature` 函数来获取注意力特征向量。在 PointNet++ 加注意力机制改进中,我们对每个点和其 k 个最近邻点计算了注意力权重,然后用注意力权重加权求和得到了注意力特征向量,最后将所有注意力特征向量拼接起来作为输出结果。 请注意,这只是一个简单的示例,实际上,PointNet++ 加注意力机制改进的实现要比这个复杂得多。如果您需要更复杂的实现,建议参考相关论文或其他开源实现
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值