数学公式总结
奇偶性判断
ln ( 1 + x 2 − x ) = − ln ( 1 + x 2 + x ) ( 分子有理化化简 ) \ln(\sqrt{1+x^2}-x)=-\ln(\sqrt{1+x^2}+x) \quad (分子有理化化简) ln(1+x2−x)=−ln(1+x2+x)(分子有理化化简)
求极限
lim x → 0 + 2 + e 1 x 1 + e 4 x = lim x → 0 + 2 e − 4 x + e − 3 x e − 4 x + 1 = 0 ( 趋向于无穷的极限转化 ) \lim _{x\rightarrow 0^+} \frac{2+e^{\frac 1x}}{1+e^{\frac 4x}}= \lim _{x\rightarrow 0^+} \frac{2e^{-\frac 4x}+e^{-\frac 3x}}{e^{-\frac 4x}+1}=0 \quad (趋向于无穷的极限转化) x→0+lim1+ex42+ex1=x→0+lime−x4+12e−x4+e−x3=0(趋向于无穷的极限转化)
- 若表达式中含有 e 1 x 和 e^{\frac 1x}和 ex1和 arctan 1 x \arctan \frac 1x arctanx1求在0处极限时要分左右极限
x趋近0的等价无穷小
sin x ∼ x tan x ∼ x x − sin x ∼ x 3 6 x − tan x ∼ − x 3 3 x − arcsin x ∼ − x 3 6 x − arctan x ∼ x 3 3 sin x − tan x ∼ − x 3 2 ln ( 1 + x ) ∼ x e x − 1 ∼ x 1 − cos x ∼ 1 2 x 2 1 + x n − 1 ∼ 1 n x \sin x \sim x \\ \tan x \sim x \\ \\ x - \sin x \sim \frac{x^3}{6}\\ x-\tan x \sim -\frac{x^3}{3}\\ \\ x- \arcsin x \sim -\frac{x^3}{6}\\ x- \arctan x \sim \frac{x^3}{3}\\ \\ \sin x - \tan x \sim -\frac{x^3}{2}\\ \ln (1+x) \sim x\\ e^x-1 \sim x \\ 1- \cos x \sim \frac 12 x^2\\ \sqrt[n]{1+x}-1 \sim \frac 1n x sinx∼xtanx∼xx−sinx∼6x3x−tanx∼−3x3x−arcsinx∼−6x3x−arctanx∼3x3sinx−tanx∼−2x3ln(1+x)∼xex−1∼x1−cosx∼21x2n1+x−1∼n1x
两个重要极限
lim x → 0 sin x x = 1 lim n → ∞ ( 1 + 1 n ) n = e \lim_{x \rightarrow 0} \frac{\sin x}{x}=1\\ \lim_{n \rightarrow \infty} (1+\frac 1n)^n = e x→0limxsinx=1n→∞lim(1+n1)n=e
无穷大的比较
ln α n ≪ n β ≪ α n ≪ n ! ≪ n n \ln^{\alpha} n \ll n^{\beta} \ll \alpha^n \ll n!\ll n^n lnαn≪nβ≪αn≪n!≪nn
倍角公式
s i n ( α + β ) = s i n α c o s β + c o s α s i n β sin(\alpha+\beta)=sin\alpha cos\beta+cos\alpha sin\beta sin(α+β)=sinαcosβ+cosαsinβ
s i n ( α − β ) = s i n α c o s β − c o s α s i n β sin(\alpha-\beta)=sin\alpha cos\beta-cos\alpha sin\beta sin(α−β)=sinαcosβ−cosαsinβ
c o s ( α + β ) = c o s α c o s β − s i n α s i n β cos(\alpha+\beta)=cos\alpha cos\beta-sin\alpha sin\beta cos(α+β)=cosαcosβ−sinαsinβ
c o s ( α − β ) = c o s α c o s β + s i n α s i n β cos(\alpha-\beta)=cos\alpha cos\beta+sin\alpha sin\beta cos(α−β)=cosαcosβ+sinαsinβ
t a n ( α + β ) = t a n α + t a n β 1 − t a n α t a n β tan(\alpha +\beta)=\frac{tan\alpha + tan\beta}{1-tan\alpha tan\beta} tan(α+β)=1−tanαtanβtanα+tanβ
t a n ( α − β ) = t a n α − t a n β 1 + t a n α t a n β tan(\alpha- \beta)=\frac{tan\alpha - tan\beta}{1+tan\alpha tan\beta} tan(α−β)=1+tanαtanβtanα−tanβ
二倍角公式
s i n 2 α = 2 s i n α c o n α sin2\alpha = 2sin\alpha con\alpha sin2α=2sinαconα
c o s 2 α = c o s 2 α − s i n 2 α = 2 c o s 2 α − 1 = 1 − 2 s i n 2 α cos2\alpha = cos^2 \alpha-sin^2 \alpha = 2cos^2 \alpha-1 = 1-2sin^2\alpha cos2α=cos2α−sin2α=2cos2α−1=1−2sin2α
t a n 2 α = 2 t a n α 1 − t a n 2 α tan2\alpha = \frac{2tan\alpha}{1-tan^2\alpha} tan2α=1−tan2α2tanα
万能代换公式
令 u = tan x 2 sin x = 2 u 1 + u 2 , cos x = 1 − u 2 1 + u 2 , tan x = 2 u 1 − u 2 ∵ x = 2 arctan u , ∴ d x = 2 1 + u 2 d u 令u=\tan \frac x2 \\ \sin x = \frac{2u}{1+u^2},\cos x = \frac{1-u^2}{1+u^2},\tan x = \frac{2u}{1-u^2}\\ \because x = 2 \arctan u,\therefore dx = \frac2{1+u^2}du 令u=tan2xsinx=1+u22u,cosx=1+u21−u2,tanx=1−u22u∵x=2arctanu,∴dx=1+u22du
泰勒展开总结
泰勒展开的推导:对 f ( x 0 ) 不断求导,就得到了 ( x − x 0 ) 1 ⟶ ( x − x 0 ) n 的系数 a n 与 f ( n ) ( x 0 ) 的关系表达式: f ( n ) ( x 0 ) = n ⋅ ( n − 1 ) … 2 ⋅ 1 ⋅ a n 化简得到: a n = f ( n ) ( x 0 ) n ! f ( x ) = ∑ 0 n f ( n ) ( x 0 ) n ! ( x − x 0 ) n 泰勒展开的推导:对f(x_0)不断求导,就得到了(x-x_0)^1 \longrightarrow (x-x_0)^n的系数a_n与f^{(n)}(x_0)的关系表达式:\\ f^{(n)}(x_0)=n \cdot (n-1) \dots 2 \cdot 1 \cdot a_n\\ 化简得到:a_n= \frac{f^{(n)}(x_0)}{n!}\\ f(x)=\sum _0 ^n \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n 泰勒展开的推导:对f(x0)不断求导,就得到了(x−x0)1⟶(x−x0)n的系数an与f(n)(x0)的关系表达式:f(n)(x0)=n⋅(n−1)…2⋅1⋅an化简得到:an=n!f(n)(x0)f(x)=0∑nn!f(n)(x0)(x−x0)n
常见的泰勒公式:(取 x 0 = 0 x_0=0 x0=0)
1 1 − x = 1 + x + x 2 + x 3 + ⋯ + x n (1) \frac1{1-x}=1+x+x^2+x^3 + \dots + x^n \tag1 1−x1=1+x+x2+x3+⋯+xn(1)
1 1 + x = 1 − x + x 2 − x 3 + ⋯ + ( − x ) n (2) \frac1{1+x}=1-x+x^2-x^3+\dots +(-x)^n \tag2 1+x1=1−x+x2−x3+⋯+(−x)n(2)
e x = 1 + x + x 2 2 ! + x 3 3 ! + ⋯ + x n n ! + … (3) e^x = 1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+ \dots +\frac{x^n}{n!}+ \dots \tag3\\ ex=1+x+2!x2+3!x3+⋯+n!xn+…(3)
sin x = x − x 3 3 ! + x 5 5 ! + ⋯ + ( − 1 ) m x 2 m + 1 ( 2 m + 1 ) ! (4) \sin x = x-\frac{x^3}{3!}+\frac{x^5}{5!}+\dots + (-1)^{m}\frac{x^{2m+1}}{{(2m+1)}!} \tag4\\ sinx=x−3!x3+5!x5+⋯+(−1)m(2m+1)!x2m+1(4)
cos x = 1 − x 2 2 ! + x 4 4 ! + ⋯ + ( − 1 ) m x 2 m ( 2 m ) ! (5) \cos x = 1-\frac{x^2}{2!}+\frac{x^4}{4!}+\dots +(-1)^m\frac{x^{2m}}{(2m)!} \tag5\\ cosx=1−2!x2+4!x4+⋯+(−1)m(2m)!x2m(5)
ln ( 1 + x ) = x − x 2 2 + x 3 3 − x 4 4 + ⋯ + ( − 1 ) n − 1 x n n (6) \ln(1+x) = x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\dots +(-1)^{n-1}\frac{x^n}{n} \tag6\\ ln(1+x)=x−2x2+3x3−4x4+⋯+(−1)n−1nxn(6)
( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + ⋯ + α ( α − 1 ) … ( α − n + 1 ) n ! x n (7) (1+x)^ {\alpha} = 1+\alpha x + \frac{\alpha(\alpha -1)}{2!}x^2 +\dots +\frac{\alpha(\alpha -1)\dots(\alpha -n+1)}{n!}x^n \tag7\\ (1+x)α=1+αx+2!α(α−1)x2+⋯+n!α(α−1)…(α−n+1)xn(7)
基本积分公式的证明
∫ tan x d x = − ln ∣ cos x ∣ + C p r o o f . ∫ tan x d x = ∫ sin x cos x d x = − ∫ d ( cos x ) cos x = − ln ∣ cos x ∣ + C (1) \int \tan x dx= -\ln |\cos x| + C\\ \tag1 proof. \qquad \qquad \qquad \qquad \qquad\qquad \qquad \qquad \qquad \qquad\qquad \qquad \qquad \qquad \qquad\\ \int \tan x dx= \int \frac{\sin x}{\cos x}dx = -\int \frac{d(\cos x)}{\cos x}= -\ln |\cos x| + C\\ ∫tanxdx=−ln∣cosx∣+Cproof.∫tanxdx=∫cosxsinxdx=−∫cosxd(cosx)=−ln∣cosx∣+C(1)
∫ sec x d x = ln ∣ sec x + tan x ∣ + C p r o o f . ∫ sec x d x = ∫ 1 cos x d x = ∫ cos x cos 2 x d x = ∫ d ( sin x ) 1 − sin 2 x sin x ⟶ u = ∫ d ( u ) 1 − u 2 = 1 2 ln ∣ 1 + u 1 − u ∣ + C = 1 2 ln ∣ 1 + sin x 1 − sin x ∣ + C = 1 2 ln ∣ ( 1 + sin x ) 2 cos 2 x ∣ + C = ln ∣ sec x + tan x ∣ + C (2) \int \sec x dx = \ln |\sec x + \tan x|+C\\ \tag2 proof. \qquad \qquad \qquad \qquad \qquad\qquad \qquad \qquad \qquad \qquad\qquad \qquad \qquad \qquad \qquad\\ \int \sec x dx =\int \frac{1}{\cos x}dx = \int \frac{\cos x}{\cos^2 x}dx = \int \frac{d(\sin x)}{1-\sin^2x}\\ \sin x \longrightarrow u\\ =\int \frac{d(u)}{1-u^2}=\frac12 \ln |\frac{1+u}{1-u}|+C=\frac12 \ln |\frac{1+\sin x}{1-\sin x}|+C\\ =\frac12 \ln |\frac{(1+\sin x)^2}{\cos^2 x}|+C=\ln |\sec x + \tan x|+C ∫secxdx=ln∣secx+tanx∣+Cproof.∫secxdx=∫cosx1dx=∫cos2xcosxdx=∫1−sin2xd(sinx)sinx⟶u=∫1−u2d(u)=21ln∣1−u1+u∣+C=21ln∣1−sinx1+sinx∣+C=21ln∣cos2x(1+sinx)2∣+C=ln∣secx+tanx∣+C(2)
∫ 1 a 2 − x 2 d x = 1 2 a ln ∣ a + x a − x ∣ + C p r o o f . ∫ 1 a 2 − x 2 d x = 1 2 a ∫ 1 a + x + 1 a − x d x = 1 2 a ( ln ∣ a + x ∣ − ln ∣ a − x ∣ ) + C = 1 2 a ln ∣ a + x a − x ∣ + C (3) \int \frac 1{a^2-x^2}dx=\frac 1{2a}\ln|\frac{a+x}{a-x}|+C\\ \tag3 proof. \qquad \qquad \qquad \qquad \qquad\qquad \qquad \qquad \qquad \qquad\qquad \qquad \qquad \qquad \qquad\\ \int \frac 1{a^2-x^2}dx=\frac 1{2a} \int \frac1{a+x}+\frac1{a-x}dx=\frac 1{2a}(\ln|a+x|-\ln|a-x|)+C\\ =\frac 1{2a}\ln|\frac{a+x}{a-x}|+C ∫a2−x21dx=2a1ln∣a−xa+x∣+Cproof.∫a2−x21dx=2a1∫a+x1+a−x1dx=2a1(ln∣a+x∣−ln∣a−x∣)+C=2a1ln∣a−xa+x∣+C(3)
$$
$$
积分中常见的一些代换,巧妙应用:
∫ sin t cos t d t = 1 2 ∫ d ( sin 2 t ) (1) \int\sin t \cos t dt = \frac12 \int d(\sin^2t) \tag1\\ ∫sintcostdt=21∫d(sin2t)(1)
∫ cos 3 x d x = ∫ cos 2 x d ( sin x ) = ∫ ( 1 − sin 2 x ) d ( sin x ) (2) \int \cos^3 x dx = \int \cos^2 x d(\sin x) = \int (1-\sin ^2 x)d(\sin x) \tag2 ∫cos3xdx=∫cos2xd(sinx)=∫(1−sin2x)d(sinx)(2)
∫ 1 ( t 2 + 1 ) 2 d t , 令 t = tan u , 带入求得积分 (3) \int \frac1{(t^2+1)^2}dt ,令t=\tan u,带入求得积分 \tag3 ∫(t2+1)21dt,令t=tanu,带入求得积分(3)
∫ d x x ( x 4 + 1 ) = ∫ x 3 d x x 4 ( x 4 + 1 ) = 1 4 ∫ d ( x 4 ) x 4 ( x 4 + 1 ) (4) \int\frac{dx}{x(x^4+1)}=\int\frac{x^3dx}{x^4(x^4+1)}=\frac14\int \frac{d(x^4)}{x^4(x^4+1)} \tag4 ∫x(x4+1)dx=∫x4(x4+1)x3dx=41∫x4(x4+1)d(x4)(4)
∫ 0 π 2 cos θ cos θ + sin θ d θ = 1 2 ∫ 0 π 2 cos θ + sin θ cos θ + sin θ d θ = π 4 , p r o o f . ∵ ∫ a b f ( x ) d x ⟶ x = a + b − t − ∫ b a f ( a + b − t ) d t = ∫ a b f ( a + b − x ) d x , ∴ ∫ a b f ( x ) d x = 1 2 ∫ a b f ( x ) + f ( a + b − x ) d x (5) \int_0^{\frac{\pi}2} \frac{\cos \theta}{\cos \theta + \sin \theta} d \theta = \frac12 \int_0^{\frac{\pi}2} \frac{\cos \theta + \sin \theta}{\cos \theta + \sin \theta}d \theta = \frac\pi 4,\\ proof. \qquad \qquad \qquad \qquad \qquad\qquad \qquad \qquad \qquad \qquad\qquad \qquad \qquad \qquad \qquad\\ \because \int_a^b f(x)dx\stackrel{x = a + b-t }{\longrightarrow}-\int _b ^a f(a+b-t)dt = \int_a^b f(a+b-x)dx,\\ \therefore \int_a^b f(x)dx = \frac12 \int_a^b f(x) + f(a+b-x)dx \tag5 ∫02πcosθ+sinθcosθdθ=21∫02πcosθ+sinθcosθ+sinθdθ=4π,proof.∵∫abf(x)dx⟶x=a+b−t−∫baf(a+b−t)dt=∫abf(a+b−x)dx,∴∫abf(x)dx=21∫abf(x)+f(a+b−x)dx(5)
∫ 0 π 2 sin n x d x = ∫ 0 π 2 cos n x d x = { ( n − 1 ) ! ! n ! ! ⋅ π 2 , n 为偶数 ( n − 1 ) ! ! n ! ! , n 为奇数 I n = ∫ 0 π 2 sin n x d x = − ∫ 0 π 2 sin n − 1 x d cos x = − sin n − 1 x ⋅ cos x ∣ 0 π 2 + ∫ 0 π 2 ( n − 1 ) sin ( n − 2 ) x cos 2 x d x = ( n − 1 ) ∫ 0 π 2 sin ( n − 2 ) x ( 1 − sin 2 x ) d x = ( n − 1 ) ∫ 0 π 2 sin ( n − 2 ) x − sin n x d x = ( n − 1 ) I n − 2 − ( n − 1 ) I n ∴ I n = n − 1 n I n − 2 又 ∵ I 0 = π 2 , I 1 = 1 , 就得到了推导式 (6) \int_0 ^{\frac{\pi}2} \sin^n x dx = \int_0 ^{\frac{\pi}2} \cos^n x dx = \tag6 \left\{\begin{matrix}\frac {(n-1)!!}{n!!} \cdot \frac{\pi}2 & ,n为偶数\\ \frac {(n-1)!!}{n!!} & ,n为奇数 \end{matrix}\right.\\ \\ \begin{split} I_n &= \int_0 ^{\frac{\pi}2} \sin^n x dx \\ &= -\int_0 ^{\frac{\pi}2} \sin^{n-1} x d\cos x \\ &= -\sin^{n-1} x \cdot \cos x |_0 ^{\frac{\pi}2} + \int_0 ^{\frac{\pi}2} (n-1)\sin^{(n-2)} x \cos^2 x dx \\ &= (n-1)\int_0 ^{\frac{\pi}2}\sin^{(n-2)} x (1-\sin^2 x )dx \\ &= (n-1)\int_0 ^{\frac{\pi}2}\sin^{(n-2)} x -\sin^n x dx \\ &= (n-1) I_{n-2}-(n-1)I_n \end{split} \\ \therefore I_n= \frac{n-1}n I_{n-2}\\ 又\because I_0 = \frac {\pi}2,I_1 = 1,就得到了推导式 ∫02πsinnxdx=∫02πcosnxdx={n!!(n−1)!!⋅2πn!!(n−1)!!,n为偶数,n为奇数In=∫02πsinnxdx=−∫02πsinn−1xdcosx=−sinn−1x⋅cosx∣02π+∫02π(n−1)sin(n−2)xcos2xdx=(n−1)∫02πsin(n−2)x(1−sin2x)dx=(n−1)∫02πsin(n−2)x−sinnxdx=(n−1)In−2−(n−1)In∴In=nn−1In−2又∵I0=2π,I1=1,就得到了推导式(6)
三重积分利用变量的轮换对称性
Ω
为一块固定的区域
∭
Ω
(
a
x
+
b
y
+
c
z
)
d
x
d
y
d
z
=
(
a
+
b
+
c
)
∭
Ω
x
d
x
d
y
d
z
=
(
a
+
b
+
c
)
∭
Ω
y
d
x
d
y
d
z
=
(
a
+
b
+
c
)
∭
Ω
z
d
x
d
y
d
z
\Omega 为一块固定的区域\\ \iiint \limits_{\Omega} (ax+by+cz)dxdydz = (a+b+c)\iiint \limits_{\Omega}x dxdydz=(a+b+c)\iiint \limits_{\Omega}y dxdydz=(a+b+c)\iiint \limits_{\Omega}z dxdydz
Ω为一块固定的区域Ω∭(ax+by+cz)dxdydz=(a+b+c)Ω∭xdxdydz=(a+b+c)Ω∭ydxdydz=(a+b+c)Ω∭zdxdydz
积分证明
∫ 1 x 2 + 1 d x = ln ( x + x 2 + 1 ) + C 令 x = tan t , 得: ∫ 1 x 2 + 1 d x = ∫ cos t cos 2 t d t = ∫ d ( sin t ) 1 − sin 2 t 令 sin t = u , 得: ∫ d u 1 − u 2 = 1 2 ∫ 1 1 + u + 1 1 − u d u = 1 2 ln ∣ 1 + u 1 − u ∣ + C 再将两次换元反带回去,即可证明。 \int \frac1{\sqrt{x^2+1}}dx = \ln{(x+\sqrt{x^2+1})}+C\\ 令x = \tan t,得:\int \frac1{\sqrt{x^2+1}}dx =\int \frac{\cos t}{\cos^2 t}dt = \int \frac{d(\sin t)}{1-\sin^2t}\\ 令\sin t = u,得:\int \frac{du}{1-u^2} = \frac12 \int \frac1{1+u}+\frac1{1-u}du = \frac12\ln|\frac{1+u}{1-u}|+C \\ 再将两次换元反带回去,即可证明。 ∫x2+11dx=ln(x+x2+1)+C令x=tant,得:∫x2+11dx=∫cos2tcostdt=∫1−sin2td(sint)令sint=u,得:∫1−u2du=21∫1+u1+1−u1du=21ln∣1−u1+u∣+C再将两次换元反带回去,即可证明。
P-积分的敛散性
I = ∫ a + ∞ d x x p 当 p = 1 时: ∫ a + ∞ d x x = ln x ∣ a + ∞ = + ∞ 当 p ≠ 1 时: ∫ a + ∞ d x x p = x 1 − p 1 − p ∣ a + ∞ 当 p > 1 时,积分收敛,当 p ⩽ 1 时,积分发散 I = \int_a^{+\infty} \frac{dx}{x^p}\\ 当p = 1 时:\int_a^{+\infty} \frac{dx}{x} = \ln x|_a^{+\infty} = +\infty \\ 当p \not= 1时:\int_a^{+\infty} \frac{dx}{x^p} = \frac{x^{1-p}}{1-p}|_a^{+\infty} 当p>1时,积分收敛,当p \leqslant 1时,积分发散 I=∫a+∞xpdx当p=1时:∫a+∞xdx=lnx∣a+∞=+∞当p=1时:∫a+∞xpdx=1−px1−p∣a+∞当p>1时,积分收敛,当p⩽1时,积分发散
级数
调和级数
∑
n
=
1
∞
1
n
\sum_{n=1}^{\infty} \frac 1n
∑n=1∞n1的证明:(用比较判别法)
∵
当
x
∈
(
0
,
+
∞
)
,
x
>
ln
(
1
+
x
)
∴
∑
n
=
1
∞
1
n
>
∑
n
=
1
∞
ln
(
1
+
1
n
)
∑
n
=
1
∞
ln
(
1
+
1
n
)
=
∑
n
=
1
∞
ln
(
n
+
1
n
)
=
∑
n
=
1
∞
(
ln
(
n
+
1
)
−
ln
n
)
=
lim
n
→
∞
ln
(
n
+
1
)
=
∞
∴
调和级数不收敛
\because 当x \in (0,+\infty),x>\ln(1+x)\\ \therefore \sum_{n=1}^{\infty} \frac 1n >\sum_{n=1}^{\infty} \ln(1+\frac 1n)\\ \sum_{n=1}^{\infty} \ln(1+\frac 1n) = \sum_{n=1}^{\infty} \ln(\frac {n+1}{n}) = \sum_{n=1}^{\infty} (\ln(n+1)-\ln n) = \lim_{n\rightarrow \infty} \ln(n+1)=\infty\\ \therefore 调和级数不收敛
∵当x∈(0,+∞),x>ln(1+x)∴n=1∑∞n1>n=1∑∞ln(1+n1)n=1∑∞ln(1+n1)=n=1∑∞ln(nn+1)=n=1∑∞(ln(n+1)−lnn)=n→∞limln(n+1)=∞∴调和级数不收敛
P-级数的收敛性:
∑
n
=
1
∞
1
n
p
=
1
+
1
2
p
+
1
3
p
+
⋯
+
1
n
p
+
⋯
∙
当
p
=
1
时,是调和级数,所以发散
∙
当
p
<
1
时,
\sum_{n=1}^{\infty} \frac {1}{n^p} = 1+\frac{1}{2^p}+\frac{1}{3^p}+\cdots+\frac{1}{n^p}+\cdots\\ \bullet 当p=1时,是调和级数,所以发散\\ \bullet 当p<1时,
n=1∑∞np1=1+2p1+3p1+⋯+np1+⋯∙当p=1时,是调和级数,所以发散∙当p<1时,
级数收敛性的证明总结
- 正项级数:
- 检验
lim
u
n
=
0
?
\lim u_n = 0?
limun=0?
- 如果 = 0 =0 =0,再采用下面办法证明是否收敛
- 如果 ≠ 0 \neq 0 =0,证明不收敛
- 先化简
u
n
u_n
un,再观察特点:
- 若 u n u_n un中含有 1 n p \frac 1{n^p} np1则用比较判别法,与p-级数比较
- 若 u n u_n un中含有n的乘积(包含 n ! n! n!)则用比值判别法
- 若 u n u_n un中含有 a f ( n ) a^{f(n)} af(n)的式子,用根植判别法
- 检验
lim
u
n
=
0
?
\lim u_n = 0?
limun=0?
- 交错级数:
- 证明 lim u n = 0 \lim u_n = 0 limun=0
- 证明 u n u_n un单调递减
空间解析几何公式总结
平面方程:
-
点法式
过点 M 0 ( x 0 , y 0 , z 0 ) 且法向量为 a → { A , B , C } A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 过点M_0(x_0,y_0,z_0)且法向量为\overrightarrow{a} \left \{ A,B,C\right\}\\ A(x-x_0)+B(y-y_0)+C(z-z_0)=0 过点M0(x0,y0,z0)且法向量为a{A,B,C}A(x−x0)+B(y−y0)+C(z−z0)=0 -
一般式
A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0 -
截距式
过 M 1 ( a , 0 , 0 ) , M 2 ( 0 , b , 0 ) , M 3 ( 0 , 0 , c ) 三点 x a + y b + z c = 1 过M_1(a,0,0),M_2(0,b,0),M_3(0,0,c)三点\\ \frac xa + \frac yb + \frac zc = 1 过M1(a,0,0),M2(0,b,0),M3(0,0,c)三点ax+by+cz=1
直线方程
-
一般方程
A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 + B 2 y + C 2 z + D 2 = 0 A_1x+B_1y+C_1z+D_1=0\\ A_2+B_2y+C_2z+D_2=0 A1x+B1y+C1z+D1=0A2+B2y+C2z+D2=0 -
标准方程
过点 M 0 ( x 0 , y 0 , z 0 ) 且方向向量为 s → { l , m , n } x − x 0 l = y − y 0 m = z − z 0 n 过点M_0(x_0,y_0,z_0)且方向向量为\overrightarrow{s} \left \{ l,m,n\right\}\\ \frac{x-x_0}l = \frac{y-y_0}m = \frac{z-z_0}n 过点M0(x0,y0,z0)且方向向量为s{l,m,n}lx−x0=my−y0=nz−z0 -
参数方程(由标准方程变形而来)
{ x = x 0 + l t y = y 0 + m t z = z 0 + n t \left\{\begin{matrix}x=x_0+lt & & \\ y=y_0+mt & & \\ z=z_0+nt & & \end{matrix}\right. ⎩ ⎨ ⎧x=x0+lty=y0+mtz=z0+nt
点到平面的距离:
d = ∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 d = \frac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2 + B^2 + C^2}} d=A2+B2+C2∣Ax0+By0+Cz0+D∣
两平面间的距离
d = ∣ D 2 − D 1 ∣ A 2 + B 2 + C 2 d =\frac{|D_2-D_1|}{\sqrt{A^2 + B^2 + C^2}} d=A2+B2+C2∣D2−D1∣
常见的曲面
-
柱面
F ( x , y ) = 0 F(x,y)=0 F(x,y)=0 -
旋转曲面
{ F ( x , y ) = 0 z = 0 ⟶ 以该曲线绕 y 轴旋转 F ( ± x 2 + y 2 , y ) = 0 \left\{\begin{matrix}F(x,y)=0 & \\ z=0 & \end{matrix}\right. \overset{以该曲线绕y轴旋转}{\longrightarrow} F(\pm \sqrt{x^2+y^2},y)=0 {F(x,y)=0z=0⟶以该曲线绕y轴旋转F(±x2+y2,y)=0 -
椭圆锥面
以曲线 { x 2 a 2 + y 2 b 2 = 1 z = c 为准线,顶点在原点的椭圆锥面: x 2 a 2 + y 2 b 2 = z 2 c 2 以曲线 \left\{\begin{matrix} \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 & \\ z=c & \end{matrix}\right.为准线,顶点在原点的椭圆锥面:\\ \frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2} 以曲线{a2x2+b2y2=1z=c为准线,顶点在原点的椭圆锥面:a2x2+b2y2=c2z2 -
椭球面
x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1 -
单页双曲面
x 2 a 2 + y 2 b 2 − z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1 a2x2+b2y2−c2z2=1 -
双叶双曲面
x 2 a 2 + y 2 b 2 + z 2 c 2 = − 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=-1 a2x2+b2y2+c2z2=−1 -
椭圆抛物面
x 2 a 2 + y 2 b 2 = z \frac{x^2}{a^2}+\frac{y^2}{b^2}=z a2x2+b2y2=z -
双曲抛物面(马鞍面)
x 2 a 2 − y 2 b 2 = − z \frac{x^2}{a^2}-\frac{y^2}{b^2}=-z a2x2−b2y2=−z
武忠祥讲义特殊方法
一、函数 极限 连续
-
积分中值定理
∫ 0 x f ( t ) d t = x f ( ξ ) \int_0^x f(t)dt = xf(\xi) ∫0xf(t)dt=xf(ξ)
-
积分估值定理
若 f ( x ) f(x) f(x)单调递增
( b − a ) f ( a ) ≤ ∫ a b f ( t ) d t ≤ ( b − a ) f ( b ) (b-a)f(a) \le \int_a^b f(t)dt \le (b-a)f(b) (b−a)f(a)≤∫abf(t)dt≤(b−a)f(b)
-
同型函数相减,考虑拉格朗日中值定理的应用
eg
l i m x → 0 e sin x − e x sin x − x = l i m x → 0 e ξ ( sin x − x ) sin x − x = 1 lim_{x\rightarrow 0} \frac{e^{\sin x}-e^x}{\sin x - x} = lim_{x\rightarrow 0} \frac{e^{\xi}(\sin x - x)}{\sin x - x} =1 limx→0sinx−xesinx−ex=limx→0sinx−xeξ(sinx−x)=1
-
若 α ( x ) → 0 , α ( x ) β ( x ) → 0 \alpha(x)\rightarrow 0,\alpha(x)\beta(x)\rightarrow 0 α(x)→0,α(x)β(x)→0
则 ( 1 + α ( x ) ) β ( x ) − 1 = α ( x ) β ( x ) (1+\alpha(x))^{\beta(x)}-1 = \alpha(x)\beta(x) (1+α(x))β(x)−1=α(x)β(x)
-
n项和的数列极限
第一部分 n 2 n^2 n2不随n变化而变化,称为主体部分
第二部分随项的变化而变化,称为变化部分
当变化部分的最大值与主体部分相比是次量级就用夹逼定理
当变化部分的最大值与主体部分相比是同量级就用定积分定义
-
数列 x n {x_n} xn由 x 1 = a , x n + 1 = f ( x n ) x_1=a,x_{n+1}=f(x_n) x1=a,xn+1=f(xn)所决定
- 若
f
(
x
)
f(x)
f(x)单调增
- 当 x 1 ≤ x 2 x_1 \le x_2 x1≤x2时,则{ x n x_n xn}单调增
- 当 x 1 ≥ x 2 x_1 \ge x_2 x1≥x2时,则{ x n x_n xn}单调减
- 若 f ( x ) f(x) f(x)单调减,则{ x n x_n xn}不单调
- 若
f
(
x
)
f(x)
f(x)单调增
-
若 f ( x ) f(x) f(x)在x的某邻域内连续,且当 x → 0 x\rightarrow 0 x→0时, f ( x ) f(x) f(x)是x的m阶无穷小, φ ( x ) \varphi(x) φ(x)是x的n阶无穷小
则当 x → 0 x\rightarrow 0 x→0时
F ( x ) = ∫ 0 φ ( x ) f ( x ) d x F(x)= \int _0 ^{\varphi(x)} f(x)dx F(x)=∫0φ(x)f(x)dx
是x的n(m+1)阶无穷小
二、一元函数微分学
-
设 f ( x ) = φ ( x ) ∣ x − a ∣ f(x)=\varphi(x)|x-a| f(x)=φ(x)∣x−a∣,其中 φ ( x ) \varphi(x) φ(x)在 x = a x=a x=a处连续,则 f ( x ) f(x) f(x)在 x = a x=a x=a处可导的充要条件是 φ ( a ) = 0 \varphi(a)=0 φ(a)=0
-
lim n → ∞ x 1 n + x 2 n + ⋯ + x m n n = m a x [ x 1 , x 2 , ⋯ , x m ] \lim _{n \rightarrow \infty} \sqrt[n]{x_1^n +x_2^n+ \cdots +x_m^n} =max[x_1,x_2,\cdots,x_m] limn→∞nx1n+x2n+⋯+xmn=max[x1,x2,⋯,xm]
-
隐函数求导后可以利用原方程化简导数表达式
-
d x d y = 1 d y d x 但是 d 2 x d y 2 ≠ 1 d 2 y d x 2 \frac{dx}{dy}=\frac{1}{\frac{dy}{dx}}\\ 但是\frac{d^2x}{dy^2}\neq \frac{1}{\frac{d^2y}{dx^2}} dydx=dxdy1但是dy2d2x=dx2d2y1
-
若在区间I上 f ( n ) ( x ) ≠ 0 f^{(n)}(x)\neq 0 f(n)(x)=0,则方程 f ( x ) = 0 f(x)=0 f(x)=0在I上最多有n个实根
武忠祥严选题做题用到
二、一元函数微分学
-
lim n → ∞ x 1 n + x 2 n + ⋯ + x m n n = m a x [ x 1 , x 2 , ⋯ , x m ] \lim _{n \rightarrow \infty} \sqrt[n]{x_1^n +x_2^n+ \cdots +x_m^n} =max[x_1,x_2,\cdots,x_m] n→∞limnx1n+x2n+⋯+xmn=max[x1,x2,⋯,xm]
-
若fx在x=0处连续,不能推出fx在x=0的某邻域连续
-
三种点说明
-
驻点:导数为0的点
-
极值点:可能在两种点取得(驻点或导数不存在的点)
-
拐点:曲线在 x 0 x_0 x0的两侧凹凸性相反,则称点 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))为函数的拐点
凹凸性改变有两种情况:
-
渐变型
例如 y = x 3 y=x^3 y=x3在点 ( 0 , 0 ) (0,0) (0,0)处
-
由绝对值导致的突变型
例如 y = ∣ x 2 − 1 ∣ y=|x^2 -1| y=∣x2−1∣在点 ( − 1 , 0 ) , ( 1 , 0 ) (-1,0),(1,0) (−1,0),(1,0)处
-
-
-
求n阶导数考虑
-
从低阶到高阶归纳n阶导数的式子
-
使用泰勒公式
题目特点:
- 若 f ( x ) = x m φ ( x ) f(x)=x^m \varphi(x) f(x)=xmφ(x),
- 且 φ ( x ) \varphi(x) φ(x)的泰勒公式很容易写出来,
- 最终要求的不是 f n ( x ) f^{n}(x) fn(x)而是 f n ( 0 ) f^{n}(0) fn(0)
方法:写出 φ ( x ) \varphi(x) φ(x)的泰勒公式,即可得到 f ( x ) f(x) f(x)的泰勒公式,找到其x的n次项系数 a n a_n an,因为 a n = f n ( 0 ) n ! a_n = \frac{f^{n}(0)}{n!} an=n!fn(0),带入即可得到
-
-
因式分解时考虑待定系数法
KaTeX parse error: Expected 'EOF', got '&' at position 18: …x^3+6x^2-6x-4 &̲ = 0 \\ (x-1)(a… -
F ( x ) = ∫ 0 x t f ( x − t ) d t F(x)=\int^x_0 tf(x-t)dt F(x)=∫0xtf(x−t)dt,这种情况没法直接求 F ( x ) F(x) F(x)的导数,第一步先换元,令 u = x − t u=x-t u=x−t,换元的同时要改变上下限
F ( x ) = ∫ 0 x t f ( x − t ) d t = ∫ − x 0 ( x − u ) f ( u ) ( − d u ) = ∫ 0 x ( x − u ) f ( u ) d u F(x)=\int^x_0 tf(x-t)dt = \int^0_{-x} (x-u)f(u)(-du) = \int^x_0 (x-u)f(u)du F(x)=∫0xtf(x−t)dt=∫−x0(x−u)f(u)(−du)=∫0x(x−u)f(u)du
33,34的第一步做题思路类似