高等数学公式总结

本文总结了数学中的关键公式,包括奇偶性判断、极限求解、等价无穷小替换、重要极限、无穷大比较等内容,并提供了三角函数、指数函数、对数函数的泰勒展开式。此外还介绍了积分的基本证明方法及一些高级技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数学公式总结

奇偶性判断

ln ⁡ ( 1 + x 2 − x ) = − ln ⁡ ( 1 + x 2 + x ) ( 分子有理化化简 ) \ln(\sqrt{1+x^2}-x)=-\ln(\sqrt{1+x^2}+x) \quad (分子有理化化简) ln(1+x2 x)=ln(1+x2 +x)(分子有理化化简)

求极限

lim ⁡ x → 0 + 2 + e 1 x 1 + e 4 x = lim ⁡ x → 0 + 2 e − 4 x + e − 3 x e − 4 x + 1 = 0 ( 趋向于无穷的极限转化 ) \lim _{x\rightarrow 0^+} \frac{2+e^{\frac 1x}}{1+e^{\frac 4x}}= \lim _{x\rightarrow 0^+} \frac{2e^{-\frac 4x}+e^{-\frac 3x}}{e^{-\frac 4x}+1}=0 \quad (趋向于无穷的极限转化) x0+lim1+ex42+ex1=x0+limex4+12ex4+ex3=0(趋向于无穷的极限转化)

  • 若表达式中含有 e 1 x 和 e^{\frac 1x}和 ex1 arctan ⁡ 1 x \arctan \frac 1x arctanx1求在0处极限时要分左右极限

x趋近0的等价无穷小

sin ⁡ x ∼ x tan ⁡ x ∼ x x − sin ⁡ x ∼ x 3 6 x − tan ⁡ x ∼ − x 3 3 x − arcsin ⁡ x ∼ − x 3 6 x − arctan ⁡ x ∼ x 3 3 sin ⁡ x − tan ⁡ x ∼ − x 3 2 ln ⁡ ( 1 + x ) ∼ x e x − 1 ∼ x 1 − cos ⁡ x ∼ 1 2 x 2 1 + x n − 1 ∼ 1 n x \sin x \sim x \\ \tan x \sim x \\ \\ x - \sin x \sim \frac{x^3}{6}\\ x-\tan x \sim -\frac{x^3}{3}\\ \\ x- \arcsin x \sim -\frac{x^3}{6}\\ x- \arctan x \sim \frac{x^3}{3}\\ \\ \sin x - \tan x \sim -\frac{x^3}{2}\\ \ln (1+x) \sim x\\ e^x-1 \sim x \\ 1- \cos x \sim \frac 12 x^2\\ \sqrt[n]{1+x}-1 \sim \frac 1n x sinxxtanxxxsinx6x3xtanx3x3xarcsinx6x3xarctanx3x3sinxtanx2x3ln(1+x)xex1x1cosx21x2n1+x 1n1x

两个重要极限

lim ⁡ x → 0 sin ⁡ x x = 1 lim ⁡ n → ∞ ( 1 + 1 n ) n = e \lim_{x \rightarrow 0} \frac{\sin x}{x}=1\\ \lim_{n \rightarrow \infty} (1+\frac 1n)^n = e x0limxsinx=1nlim(1+n1)n=e

无穷大的比较

ln ⁡ α n ≪ n β ≪ α n ≪ n ! ≪ n n \ln^{\alpha} n \ll n^{\beta} \ll \alpha^n \ll n!\ll n^n lnαnnβαnn!nn

倍角公式

s i n ( α + β ) = s i n α c o s β + c o s α s i n β sin(\alpha+\beta)=sin\alpha cos\beta+cos\alpha sin\beta sin(α+β)=sinαcosβ+cosαsinβ

s i n ( α − β ) = s i n α c o s β − c o s α s i n β sin(\alpha-\beta)=sin\alpha cos\beta-cos\alpha sin\beta sin(αβ)=sinαcosβcosαsinβ

c o s ( α + β ) = c o s α c o s β − s i n α s i n β cos(\alpha+\beta)=cos\alpha cos\beta-sin\alpha sin\beta cos(α+β)=cosαcosβsinαsinβ

c o s ( α − β ) = c o s α c o s β + s i n α s i n β cos(\alpha-\beta)=cos\alpha cos\beta+sin\alpha sin\beta cos(αβ)=cosαcosβ+sinαsinβ

t a n ( α + β ) = t a n α + t a n β 1 − t a n α t a n β tan(\alpha +\beta)=\frac{tan\alpha + tan\beta}{1-tan\alpha tan\beta} tan(α+β)=1tanαtanβtanα+tanβ

t a n ( α − β ) = t a n α − t a n β 1 + t a n α t a n β tan(\alpha- \beta)=\frac{tan\alpha - tan\beta}{1+tan\alpha tan\beta} tan(αβ)=1+tanαtanβtanαtanβ

二倍角公式

s i n 2 α = 2 s i n α c o n α sin2\alpha = 2sin\alpha con\alpha sin2α=2sinαconα

c o s 2 α = c o s 2 α − s i n 2 α = 2 c o s 2 α − 1 = 1 − 2 s i n 2 α cos2\alpha = cos^2 \alpha-sin^2 \alpha = 2cos^2 \alpha-1 = 1-2sin^2\alpha cos2α=cos2αsin2α=2cos2α1=12sin2α

t a n 2 α = 2 t a n α 1 − t a n 2 α tan2\alpha = \frac{2tan\alpha}{1-tan^2\alpha} tan2α=1tan2α2tanα

万能代换公式

令 u = tan ⁡ x 2 sin ⁡ x = 2 u 1 + u 2 , cos ⁡ x = 1 − u 2 1 + u 2 , tan ⁡ x = 2 u 1 − u 2 ∵ x = 2 arctan ⁡ u , ∴ d x = 2 1 + u 2 d u 令u=\tan \frac x2 \\ \sin x = \frac{2u}{1+u^2},\cos x = \frac{1-u^2}{1+u^2},\tan x = \frac{2u}{1-u^2}\\ \because x = 2 \arctan u,\therefore dx = \frac2{1+u^2}du u=tan2xsinx=1+u22u,cosx=1+u21u2,tanx=1u22ux=2arctanu,dx=1+u22du

泰勒展开总结

泰勒展开的推导:对 f ( x 0 ) 不断求导,就得到了 ( x − x 0 ) 1 ⟶ ( x − x 0 ) n 的系数 a n 与 f ( n ) ( x 0 ) 的关系表达式: f ( n ) ( x 0 ) = n ⋅ ( n − 1 ) … 2 ⋅ 1 ⋅ a n 化简得到: a n = f ( n ) ( x 0 ) n ! f ( x ) = ∑ 0 n f ( n ) ( x 0 ) n ! ( x − x 0 ) n 泰勒展开的推导:对f(x_0)不断求导,就得到了(x-x_0)^1 \longrightarrow (x-x_0)^n的系数a_n与f^{(n)}(x_0)的关系表达式:\\ f^{(n)}(x_0)=n \cdot (n-1) \dots 2 \cdot 1 \cdot a_n\\ 化简得到:a_n= \frac{f^{(n)}(x_0)}{n!}\\ f(x)=\sum _0 ^n \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n 泰勒展开的推导:对f(x0)不断求导,就得到了(xx0)1(xx0)n的系数anf(n)(x0)的关系表达式:f(n)(x0)=n(n1)21an化简得到:an=n!f(n)(x0)f(x)=0nn!f(n)(x0)(xx0)n

常见的泰勒公式:(取 x 0 = 0 x_0=0 x0=0

1 1 − x = 1 + x + x 2 + x 3 + ⋯ + x n (1) \frac1{1-x}=1+x+x^2+x^3 + \dots + x^n \tag1 1x1=1+x+x2+x3++xn(1)

1 1 + x = 1 − x + x 2 − x 3 + ⋯ + ( − x ) n (2) \frac1{1+x}=1-x+x^2-x^3+\dots +(-x)^n \tag2 1+x1=1x+x2x3++(x)n(2)

e x = 1 + x + x 2 2 ! + x 3 3 ! + ⋯ + x n n ! + … (3) e^x = 1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+ \dots +\frac{x^n}{n!}+ \dots \tag3\\ ex=1+x+2!x2+3!x3++n!xn+(3)

sin ⁡ x = x − x 3 3 ! + x 5 5 ! + ⋯ + ( − 1 ) m x 2 m + 1 ( 2 m + 1 ) ! (4) \sin x = x-\frac{x^3}{3!}+\frac{x^5}{5!}+\dots + (-1)^{m}\frac{x^{2m+1}}{{(2m+1)}!} \tag4\\ sinx=x3!x3+5!x5++(1)m(2m+1)!x2m+1(4)

cos ⁡ x = 1 − x 2 2 ! + x 4 4 ! + ⋯ + ( − 1 ) m x 2 m ( 2 m ) ! (5) \cos x = 1-\frac{x^2}{2!}+\frac{x^4}{4!}+\dots +(-1)^m\frac{x^{2m}}{(2m)!} \tag5\\ cosx=12!x2+4!x4++(1)m(2m)!x2m(5)

ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 − x 4 4 + ⋯ + ( − 1 ) n − 1 x n n (6) \ln(1+x) = x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+\dots +(-1)^{n-1}\frac{x^n}{n} \tag6\\ ln(1+x)=x2x2+3x34x4++(1)n1nxn(6)

( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + ⋯ + α ( α − 1 ) … ( α − n + 1 ) n ! x n (7) (1+x)^ {\alpha} = 1+\alpha x + \frac{\alpha(\alpha -1)}{2!}x^2 +\dots +\frac{\alpha(\alpha -1)\dots(\alpha -n+1)}{n!}x^n \tag7\\ (1+x)α=1+αx+2!α(α1)x2++n!α(α1)(αn+1)xn(7)

基本积分公式的证明

∫ tan ⁡ x d x = − ln ⁡ ∣ cos ⁡ x ∣ + C p r o o f . ∫ tan ⁡ x d x = ∫ sin ⁡ x cos ⁡ x d x = − ∫ d ( cos ⁡ x ) cos ⁡ x = − ln ⁡ ∣ cos ⁡ x ∣ + C (1) \int \tan x dx= -\ln |\cos x| + C\\ \tag1 proof. \qquad \qquad \qquad \qquad \qquad\qquad \qquad \qquad \qquad \qquad\qquad \qquad \qquad \qquad \qquad\\ \int \tan x dx= \int \frac{\sin x}{\cos x}dx = -\int \frac{d(\cos x)}{\cos x}= -\ln |\cos x| + C\\ tanxdx=lncosx+Cproof.tanxdx=cosxsinxdx=cosxd(cosx)=lncosx+C(1)


∫ sec ⁡ x d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C p r o o f . ∫ sec ⁡ x d x = ∫ 1 cos ⁡ x d x = ∫ cos ⁡ x cos ⁡ 2 x d x = ∫ d ( sin ⁡ x ) 1 − sin ⁡ 2 x sin ⁡ x ⟶ u = ∫ d ( u ) 1 − u 2 = 1 2 ln ⁡ ∣ 1 + u 1 − u ∣ + C = 1 2 ln ⁡ ∣ 1 + sin ⁡ x 1 − sin ⁡ x ∣ + C = 1 2 ln ⁡ ∣ ( 1 + sin ⁡ x ) 2 cos ⁡ 2 x ∣ + C = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C (2) \int \sec x dx = \ln |\sec x + \tan x|+C\\ \tag2 proof. \qquad \qquad \qquad \qquad \qquad\qquad \qquad \qquad \qquad \qquad\qquad \qquad \qquad \qquad \qquad\\ \int \sec x dx =\int \frac{1}{\cos x}dx = \int \frac{\cos x}{\cos^2 x}dx = \int \frac{d(\sin x)}{1-\sin^2x}\\ \sin x \longrightarrow u\\ =\int \frac{d(u)}{1-u^2}=\frac12 \ln |\frac{1+u}{1-u}|+C=\frac12 \ln |\frac{1+\sin x}{1-\sin x}|+C\\ =\frac12 \ln |\frac{(1+\sin x)^2}{\cos^2 x}|+C=\ln |\sec x + \tan x|+C secxdx=lnsecx+tanx+Cproof.secxdx=cosx1dx=cos2xcosxdx=1sin2xd(sinx)sinxu=1u2d(u)=21ln1u1+u+C=21ln1sinx1+sinx+C=21lncos2x(1+sinx)2+C=lnsecx+tanx+C(2)


∫ 1 a 2 − x 2 d x = 1 2 a ln ⁡ ∣ a + x a − x ∣ + C p r o o f . ∫ 1 a 2 − x 2 d x = 1 2 a ∫ 1 a + x + 1 a − x d x = 1 2 a ( ln ⁡ ∣ a + x ∣ − ln ⁡ ∣ a − x ∣ ) + C = 1 2 a ln ⁡ ∣ a + x a − x ∣ + C (3) \int \frac 1{a^2-x^2}dx=\frac 1{2a}\ln|\frac{a+x}{a-x}|+C\\ \tag3 proof. \qquad \qquad \qquad \qquad \qquad\qquad \qquad \qquad \qquad \qquad\qquad \qquad \qquad \qquad \qquad\\ \int \frac 1{a^2-x^2}dx=\frac 1{2a} \int \frac1{a+x}+\frac1{a-x}dx=\frac 1{2a}(\ln|a+x|-\ln|a-x|)+C\\ =\frac 1{2a}\ln|\frac{a+x}{a-x}|+C a2x21dx=2a1lnaxa+x+Cproof.a2x21dx=2a1a+x1+ax1dx=2a1(lna+xlnax)+C=2a1lnaxa+x+C(3)


$$

$$

积分中常见的一些代换,巧妙应用:

∫ sin ⁡ t cos ⁡ t d t = 1 2 ∫ d ( sin ⁡ 2 t ) (1) \int\sin t \cos t dt = \frac12 \int d(\sin^2t) \tag1\\ sintcostdt=21d(sin2t)(1)

∫ cos ⁡ 3 x d x = ∫ cos ⁡ 2 x d ( sin ⁡ x ) = ∫ ( 1 − sin ⁡ 2 x ) d ( sin ⁡ x ) (2) \int \cos^3 x dx = \int \cos^2 x d(\sin x) = \int (1-\sin ^2 x)d(\sin x) \tag2 cos3xdx=cos2xd(sinx)=(1sin2x)d(sinx)(2)

∫ 1 ( t 2 + 1 ) 2 d t , 令 t = tan ⁡ u , 带入求得积分 (3) \int \frac1{(t^2+1)^2}dt ,令t=\tan u,带入求得积分 \tag3 (t2+1)21dt,t=tanu,带入求得积分(3)

∫ d x x ( x 4 + 1 ) = ∫ x 3 d x x 4 ( x 4 + 1 ) = 1 4 ∫ d ( x 4 ) x 4 ( x 4 + 1 ) (4) \int\frac{dx}{x(x^4+1)}=\int\frac{x^3dx}{x^4(x^4+1)}=\frac14\int \frac{d(x^4)}{x^4(x^4+1)} \tag4 x(x4+1)dx=x4(x4+1)x3dx=41x4(x4+1)d(x4)(4)

∫ 0 π 2 cos ⁡ θ cos ⁡ θ + sin ⁡ θ d θ = 1 2 ∫ 0 π 2 cos ⁡ θ + sin ⁡ θ cos ⁡ θ + sin ⁡ θ d θ = π 4 , p r o o f . ∵ ∫ a b f ( x ) d x ⟶ x = a + b − t − ∫ b a f ( a + b − t ) d t = ∫ a b f ( a + b − x ) d x , ∴ ∫ a b f ( x ) d x = 1 2 ∫ a b f ( x ) + f ( a + b − x ) d x (5) \int_0^{\frac{\pi}2} \frac{\cos \theta}{\cos \theta + \sin \theta} d \theta = \frac12 \int_0^{\frac{\pi}2} \frac{\cos \theta + \sin \theta}{\cos \theta + \sin \theta}d \theta = \frac\pi 4,\\ proof. \qquad \qquad \qquad \qquad \qquad\qquad \qquad \qquad \qquad \qquad\qquad \qquad \qquad \qquad \qquad\\ \because \int_a^b f(x)dx\stackrel{x = a + b-t }{\longrightarrow}-\int _b ^a f(a+b-t)dt = \int_a^b f(a+b-x)dx,\\ \therefore \int_a^b f(x)dx = \frac12 \int_a^b f(x) + f(a+b-x)dx \tag5 02πcosθ+sinθcosθdθ=2102πcosθ+sinθcosθ+sinθdθ=4π,proof.abf(x)dxx=a+btbaf(a+bt)dt=abf(a+bx)dx,abf(x)dx=21abf(x)+f(a+bx)dx(5)

∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 cos ⁡ n x d x = { ( n − 1 ) ! ! n ! ! ⋅ π 2 , n 为偶数 ( n − 1 ) ! ! n ! ! , n 为奇数 I n = ∫ 0 π 2 sin ⁡ n x d x = − ∫ 0 π 2 sin ⁡ n − 1 x d cos ⁡ x = − sin ⁡ n − 1 x ⋅ cos ⁡ x ∣ 0 π 2 + ∫ 0 π 2 ( n − 1 ) sin ⁡ ( n − 2 ) x cos ⁡ 2 x d x = ( n − 1 ) ∫ 0 π 2 sin ⁡ ( n − 2 ) x ( 1 − sin ⁡ 2 x ) d x = ( n − 1 ) ∫ 0 π 2 sin ⁡ ( n − 2 ) x − sin ⁡ n x d x = ( n − 1 ) I n − 2 − ( n − 1 ) I n ∴ I n = n − 1 n I n − 2 又 ∵ I 0 = π 2 , I 1 = 1 , 就得到了推导式 (6) \int_0 ^{\frac{\pi}2} \sin^n x dx = \int_0 ^{\frac{\pi}2} \cos^n x dx = \tag6 \left\{\begin{matrix}\frac {(n-1)!!}{n!!} \cdot \frac{\pi}2 & ,n为偶数\\ \frac {(n-1)!!}{n!!} & ,n为奇数 \end{matrix}\right.\\ \\ \begin{split} I_n &= \int_0 ^{\frac{\pi}2} \sin^n x dx \\ &= -\int_0 ^{\frac{\pi}2} \sin^{n-1} x d\cos x \\ &= -\sin^{n-1} x \cdot \cos x |_0 ^{\frac{\pi}2} + \int_0 ^{\frac{\pi}2} (n-1)\sin^{(n-2)} x \cos^2 x dx \\ &= (n-1)\int_0 ^{\frac{\pi}2}\sin^{(n-2)} x (1-\sin^2 x )dx \\ &= (n-1)\int_0 ^{\frac{\pi}2}\sin^{(n-2)} x -\sin^n x dx \\ &= (n-1) I_{n-2}-(n-1)I_n \end{split} \\ \therefore I_n= \frac{n-1}n I_{n-2}\\ 又\because I_0 = \frac {\pi}2,I_1 = 1,就得到了推导式 02πsinnxdx=02πcosnxdx={n!!(n1)!!2πn!!(n1)!!n为偶数n为奇数In=02πsinnxdx=02πsinn1xdcosx=sinn1xcosx02π+02π(n1)sin(n2)xcos2xdx=(n1)02πsin(n2)x(1sin2x)dx=(n1)02πsin(n2)xsinnxdx=(n1)In2(n1)InIn=nn1In2I0=2π,I1=1,就得到了推导式(6)

三重积分利用变量的轮换对称性
Ω 为一块固定的区域 ∭ Ω ( a x + b y + c z ) d x d y d z = ( a + b + c ) ∭ Ω x d x d y d z = ( a + b + c ) ∭ Ω y d x d y d z = ( a + b + c ) ∭ Ω z d x d y d z \Omega 为一块固定的区域\\ \iiint \limits_{\Omega} (ax+by+cz)dxdydz = (a+b+c)\iiint \limits_{\Omega}x dxdydz=(a+b+c)\iiint \limits_{\Omega}y dxdydz=(a+b+c)\iiint \limits_{\Omega}z dxdydz Ω为一块固定的区域Ω(ax+by+cz)dxdydz=(a+b+c)Ωxdxdydz=(a+b+c)Ωydxdydz=(a+b+c)Ωzdxdydz

积分证明

∫ 1 x 2 + 1 d x = ln ⁡ ( x + x 2 + 1 ) + C 令 x = tan ⁡ t , 得: ∫ 1 x 2 + 1 d x = ∫ cos ⁡ t cos ⁡ 2 t d t = ∫ d ( sin ⁡ t ) 1 − sin ⁡ 2 t 令 sin ⁡ t = u , 得: ∫ d u 1 − u 2 = 1 2 ∫ 1 1 + u + 1 1 − u d u = 1 2 ln ⁡ ∣ 1 + u 1 − u ∣ + C 再将两次换元反带回去,即可证明。 \int \frac1{\sqrt{x^2+1}}dx = \ln{(x+\sqrt{x^2+1})}+C\\ 令x = \tan t,得:\int \frac1{\sqrt{x^2+1}}dx =\int \frac{\cos t}{\cos^2 t}dt = \int \frac{d(\sin t)}{1-\sin^2t}\\ 令\sin t = u,得:\int \frac{du}{1-u^2} = \frac12 \int \frac1{1+u}+\frac1{1-u}du = \frac12\ln|\frac{1+u}{1-u}|+C \\ 再将两次换元反带回去,即可证明。 x2+1 1dx=ln(x+x2+1 )+Cx=tant,得:x2+1 1dx=cos2tcostdt=1sin2td(sint)sint=u,得:1u2du=211+u1+1u1du=21ln1u1+u+C再将两次换元反带回去,即可证明。

P-积分的敛散性

I = ∫ a + ∞ d x x p 当 p = 1 时: ∫ a + ∞ d x x = ln ⁡ x ∣ a + ∞ = + ∞ 当 p ≠ 1 时: ∫ a + ∞ d x x p = x 1 − p 1 − p ∣ a + ∞ 当 p > 1 时,积分收敛,当 p ⩽ 1 时,积分发散 I = \int_a^{+\infty} \frac{dx}{x^p}\\ 当p = 1 时:\int_a^{+\infty} \frac{dx}{x} = \ln x|_a^{+\infty} = +\infty \\ 当p \not= 1时:\int_a^{+\infty} \frac{dx}{x^p} = \frac{x^{1-p}}{1-p}|_a^{+\infty} 当p>1时,积分收敛,当p \leqslant 1时,积分发散 I=a+xpdxp=1时:a+xdx=lnxa+=+p=1时:a+xpdx=1px1pa+p>1时,积分收敛,当p1时,积分发散

级数

调和级数 ∑ n = 1 ∞ 1 n \sum_{n=1}^{\infty} \frac 1n n=1n1的证明:(用比较判别法)
∵ 当 x ∈ ( 0 , + ∞ ) , x > ln ⁡ ( 1 + x ) ∴ ∑ n = 1 ∞ 1 n > ∑ n = 1 ∞ ln ⁡ ( 1 + 1 n ) ∑ n = 1 ∞ ln ⁡ ( 1 + 1 n ) = ∑ n = 1 ∞ ln ⁡ ( n + 1 n ) = ∑ n = 1 ∞ ( ln ⁡ ( n + 1 ) − ln ⁡ n ) = lim ⁡ n → ∞ ln ⁡ ( n + 1 ) = ∞ ∴ 调和级数不收敛 \because 当x \in (0,+\infty),x>\ln(1+x)\\ \therefore \sum_{n=1}^{\infty} \frac 1n >\sum_{n=1}^{\infty} \ln(1+\frac 1n)\\ \sum_{n=1}^{\infty} \ln(1+\frac 1n) = \sum_{n=1}^{\infty} \ln(\frac {n+1}{n}) = \sum_{n=1}^{\infty} (\ln(n+1)-\ln n) = \lim_{n\rightarrow \infty} \ln(n+1)=\infty\\ \therefore 调和级数不收敛 x(0,+),x>ln(1+x)n=1n1>n=1ln(1+n1)n=1ln(1+n1)=n=1ln(nn+1)=n=1(ln(n+1)lnn)=nlimln(n+1)=调和级数不收敛
P-级数的收敛性:
∑ n = 1 ∞ 1 n p = 1 + 1 2 p + 1 3 p + ⋯ + 1 n p + ⋯ ∙ 当 p = 1 时,是调和级数,所以发散 ∙ 当 p < 1 时, \sum_{n=1}^{\infty} \frac {1}{n^p} = 1+\frac{1}{2^p}+\frac{1}{3^p}+\cdots+\frac{1}{n^p}+\cdots\\ \bullet 当p=1时,是调和级数,所以发散\\ \bullet 当p<1时, n=1np1=1+2p1+3p1++np1+p=1时,是调和级数,所以发散p<1时,

级数收敛性的证明总结

  • 正项级数:
    1. 检验 lim ⁡ u n = 0 ? \lim u_n = 0? limun=0?
      • 如果 = 0 =0 =0,再采用下面办法证明是否收敛
      • 如果 ≠ 0 \neq 0 =0,证明不收敛
    2. 先化简 u n u_n un,再观察特点:
      • u n u_n un中含有 1 n p \frac 1{n^p} np1则用比较判别法,与p-级数比较
      • u n u_n un中含有n的乘积(包含 n ! n! n!)则用比值判别法
      • u n u_n un中含有 a f ( n ) a^{f(n)} af(n)的式子,用根植判别法
  • 交错级数:
    1. 证明 lim ⁡ u n = 0 \lim u_n = 0 limun=0
    2. 证明 u n u_n un单调递减

空间解析几何公式总结

平面方程:
  1. 点法式
    过点 M 0 ( x 0 , y 0 , z 0 ) 且法向量为 a → { A , B , C } A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 过点M_0(x_0,y_0,z_0)且法向量为\overrightarrow{a} \left \{ A,B,C\right\}\\ A(x-x_0)+B(y-y_0)+C(z-z_0)=0 过点M0(x0,y0,z0)且法向量为a {A,B,C}A(xx0)+B(yy0)+C(zz0)=0

  2. 一般式
    A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0

  3. 截距式
    过 M 1 ( a , 0 , 0 ) , M 2 ( 0 , b , 0 ) , M 3 ( 0 , 0 , c ) 三点 x a + y b + z c = 1 过M_1(a,0,0),M_2(0,b,0),M_3(0,0,c)三点\\ \frac xa + \frac yb + \frac zc = 1 M1(a,0,0),M2(0,b,0),M3(0,0,c)三点ax+by+cz=1

直线方程
  1. 一般方程
    A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 + B 2 y + C 2 z + D 2 = 0 A_1x+B_1y+C_1z+D_1=0\\ A_2+B_2y+C_2z+D_2=0 A1x+B1y+C1z+D1=0A2+B2y+C2z+D2=0

  2. 标准方程
    过点 M 0 ( x 0 , y 0 , z 0 ) 且方向向量为 s → { l , m , n } x − x 0 l = y − y 0 m = z − z 0 n 过点M_0(x_0,y_0,z_0)且方向向量为\overrightarrow{s} \left \{ l,m,n\right\}\\ \frac{x-x_0}l = \frac{y-y_0}m = \frac{z-z_0}n 过点M0(x0,y0,z0)且方向向量为s {l,m,n}lxx0=myy0=nzz0

  3. 参数方程(由标准方程变形而来)
    { x = x 0 + l t y = y 0 + m t z = z 0 + n t \left\{\begin{matrix}x=x_0+lt & & \\ y=y_0+mt & & \\ z=z_0+nt & & \end{matrix}\right. x=x0+lty=y0+mtz=z0+nt

点到平面的距离:

d = ∣ A x 0 + B y 0 + C z 0 + D ∣ A 2 + B 2 + C 2 d = \frac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2 + B^2 + C^2}} d=A2+B2+C2 Ax0+By0+Cz0+D

两平面间的距离

d = ∣ D 2 − D 1 ∣ A 2 + B 2 + C 2 d =\frac{|D_2-D_1|}{\sqrt{A^2 + B^2 + C^2}} d=A2+B2+C2 D2D1

常见的曲面
  • 柱面
    F ( x , y ) = 0 F(x,y)=0 F(x,y)=0

  • 旋转曲面
    { F ( x , y ) = 0 z = 0 ⟶ 以该曲线绕 y 轴旋转 F ( ± x 2 + y 2 , y ) = 0 \left\{\begin{matrix}F(x,y)=0 & \\ z=0 & \end{matrix}\right. \overset{以该曲线绕y轴旋转}{\longrightarrow} F(\pm \sqrt{x^2+y^2},y)=0 {F(x,y)=0z=0以该曲线绕y轴旋转F(±x2+y2 ,y)=0

  • 椭圆锥面
    以曲线 { x 2 a 2 + y 2 b 2 = 1 z = c 为准线,顶点在原点的椭圆锥面: x 2 a 2 + y 2 b 2 = z 2 c 2 以曲线 \left\{\begin{matrix} \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 & \\ z=c & \end{matrix}\right.为准线,顶点在原点的椭圆锥面:\\ \frac{x^2}{a^2}+\frac{y^2}{b^2}=\frac{z^2}{c^2} 以曲线{a2x2+b2y2=1z=c为准线,顶点在原点的椭圆锥面:a2x2+b2y2=c2z2

  • 椭球面
    x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1 a2x2+b2y2+c2z2=1

  • 单页双曲面
    x 2 a 2 + y 2 b 2 − z 2 c 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1 a2x2+b2y2c2z2=1

  • 双叶双曲面
    x 2 a 2 + y 2 b 2 + z 2 c 2 = − 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=-1 a2x2+b2y2+c2z2=1

  • 椭圆抛物面
    x 2 a 2 + y 2 b 2 = z \frac{x^2}{a^2}+\frac{y^2}{b^2}=z a2x2+b2y2=z

  • 双曲抛物面(马鞍面)
    x 2 a 2 − y 2 b 2 = − z \frac{x^2}{a^2}-\frac{y^2}{b^2}=-z a2x2b2y2=z

武忠祥讲义特殊方法

一、函数 极限 连续

  • 积分中值定理

    ∫ 0 x f ( t ) d t = x f ( ξ ) \int_0^x f(t)dt = xf(\xi) 0xf(t)dt=xf(ξ)

  • 积分估值定理

    f ( x ) f(x) f(x)单调递增

    ( b − a ) f ( a ) ≤ ∫ a b f ( t ) d t ≤ ( b − a ) f ( b ) (b-a)f(a) \le \int_a^b f(t)dt \le (b-a)f(b) (ba)f(a)abf(t)dt(ba)f(b)

  • 同型函数相减,考虑拉格朗日中值定理的应用

    eg

    l i m x → 0 e sin ⁡ x − e x sin ⁡ x − x = l i m x → 0 e ξ ( sin ⁡ x − x ) sin ⁡ x − x = 1 lim_{x\rightarrow 0} \frac{e^{\sin x}-e^x}{\sin x - x} = lim_{x\rightarrow 0} \frac{e^{\xi}(\sin x - x)}{\sin x - x} =1 limx0sinxxesinxex=limx0sinxxeξ(sinxx)=1

  • α ( x ) → 0 , α ( x ) β ( x ) → 0 \alpha(x)\rightarrow 0,\alpha(x)\beta(x)\rightarrow 0 α(x)0,α(x)β(x)0

    ( 1 + α ( x ) ) β ( x ) − 1 = α ( x ) β ( x ) (1+\alpha(x))^{\beta(x)}-1 = \alpha(x)\beta(x) (1+α(x))β(x)1=α(x)β(x)

  • n项和的数列极限

    第一部分 n 2 n^2 n2不随n变化而变化,称为主体部分

    第二部分随项的变化而变化,称为变化部分

    当变化部分的最大值与主体部分相比是次量级就用夹逼定理

    当变化部分的最大值与主体部分相比是同量级就用定积分定义

  • 数列 x n {x_n} xn x 1 = a , x n + 1 = f ( x n ) x_1=a,x_{n+1}=f(x_n) x1=a,xn+1=f(xn)所决定

    • f ( x ) f(x) f(x)单调增
      • x 1 ≤ x 2 x_1 \le x_2 x1x2时,则{ x n x_n xn}单调增
      • x 1 ≥ x 2 x_1 \ge x_2 x1x2时,则{ x n x_n xn}单调减
    • f ( x ) f(x) f(x)单调减,则{ x n x_n xn}不单调
  • f ( x ) f(x) f(x)在x的某邻域内连续,且当 x → 0 x\rightarrow 0 x0时, f ( x ) f(x) f(x)是x的m阶无穷小, φ ( x ) \varphi(x) φ(x)是x的n阶无穷小

    则当 x → 0 x\rightarrow 0 x0
    F ( x ) = ∫ 0 φ ( x ) f ( x ) d x F(x)= \int _0 ^{\varphi(x)} f(x)dx F(x)=0φ(x)f(x)dx
    是x的n(m+1)阶无穷小

二、一元函数微分学

  • f ( x ) = φ ( x ) ∣ x − a ∣ f(x)=\varphi(x)|x-a| f(x)=φ(x)xa,其中 φ ( x ) \varphi(x) φ(x) x = a x=a x=a处连续,则 f ( x ) f(x) f(x) x = a x=a x=a处可导的充要条件是 φ ( a ) = 0 \varphi(a)=0 φ(a)=0

  • lim ⁡ n → ∞ x 1 n + x 2 n + ⋯ + x m n n = m a x [ x 1 , x 2 , ⋯   , x m ] \lim _{n \rightarrow \infty} \sqrt[n]{x_1^n +x_2^n+ \cdots +x_m^n} =max[x_1,x_2,\cdots,x_m] limnnx1n+x2n++xmn =max[x1,x2,,xm]

  • 隐函数求导后可以利用原方程化简导数表达式

  • d x d y = 1 d y d x 但是 d 2 x d y 2 ≠ 1 d 2 y d x 2 \frac{dx}{dy}=\frac{1}{\frac{dy}{dx}}\\ 但是\frac{d^2x}{dy^2}\neq \frac{1}{\frac{d^2y}{dx^2}} dydx=dxdy1但是dy2d2x=dx2d2y1

  • 若在区间I上 f ( n ) ( x ) ≠ 0 f^{(n)}(x)\neq 0 f(n)(x)=0,则方程 f ( x ) = 0 f(x)=0 f(x)=0在I上最多有n个实根

武忠祥严选题做题用到

二、一元函数微分学

  1. lim ⁡ n → ∞ x 1 n + x 2 n + ⋯ + x m n n = m a x [ x 1 , x 2 , ⋯   , x m ] \lim _{n \rightarrow \infty} \sqrt[n]{x_1^n +x_2^n+ \cdots +x_m^n} =max[x_1,x_2,\cdots,x_m] nlimnx1n+x2n++xmn =max[x1,x2,,xm]

  2. 若fx在x=0处连续,不能推出fx在x=0的某邻域连续

  3. 三种点说明

    • 驻点:导数为0的点

    • 极值点:可能在两种点取得(驻点或导数不存在的点)

    • 拐点:曲线在 x 0 x_0 x0的两侧凹凸性相反,则称点 ( x 0 , f ( x 0 ) ) (x_0,f(x_0)) (x0,f(x0))为函数的拐点

      凹凸性改变有两种情况:

      • 渐变型

        例如 y = x 3 y=x^3 y=x3在点 ( 0 , 0 ) (0,0) (0,0)

      • 由绝对值导致的突变型

        例如 y = ∣ x 2 − 1 ∣ y=|x^2 -1| y=x21∣在点 ( − 1 , 0 ) , ( 1 , 0 ) (-1,0),(1,0) (1,0),(1,0)

        image-20221011141332903
  4. 求n阶导数考虑

    • 从低阶到高阶归纳n阶导数的式子

    • 使用泰勒公式

      题目特点:

      1. f ( x ) = x m φ ( x ) f(x)=x^m \varphi(x) f(x)=xmφ(x)
      2. φ ( x ) \varphi(x) φ(x)的泰勒公式很容易写出来,
      3. 最终要求的不是 f n ( x ) f^{n}(x) fn(x)而是 f n ( 0 ) f^{n}(0) fn(0)

      方法:写出 φ ( x ) \varphi(x) φ(x)的泰勒公式,即可得到 f ( x ) f(x) f(x)的泰勒公式,找到其x的n次项系数 a n a_n an,因为 a n = f n ( 0 ) n ! a_n = \frac{f^{n}(0)}{n!} an=n!fn(0),带入即可得到

  5. 因式分解时考虑待定系数法
    KaTeX parse error: Expected 'EOF', got '&' at position 18: …x^3+6x^2-6x-4 &̲ = 0 \\ (x-1)(a…

  6. F ( x ) = ∫ 0 x t f ( x − t ) d t F(x)=\int^x_0 tf(x-t)dt F(x)=0xtf(xt)dt,这种情况没法直接求 F ( x ) F(x) F(x)的导数,第一步先换元,令 u = x − t u=x-t u=xt,换元的同时要改变上下限

    F ( x ) = ∫ 0 x t f ( x − t ) d t = ∫ − x 0 ( x − u ) f ( u ) ( − d u ) = ∫ 0 x ( x − u ) f ( u ) d u F(x)=\int^x_0 tf(x-t)dt = \int^0_{-x} (x-u)f(u)(-du) = \int^x_0 (x-u)f(u)du F(x)=0xtf(xt)dt=x0(xu)f(u)(du)=0x(xu)f(u)du

    33,34的第一步做题思路类似

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值