计算几何之 旋转卡壳 代码模板与证明

旋转卡壳

旋转卡壳这个算法很形象,一般用来在 O ( n l o g n ) O(nlogn) O(nlogn)的时间复杂度下求最远点对问题,就是求平面中任意两点的最远距离。
一般求最远点对问题得枚举两个点,所以复杂度是 O ( n 2 ) O(n^2) O(n2),而用旋转卡壳来求可以降低这个复杂度。

旋转卡壳就是指用两条平行线来夹住一个凸多边形。我们可以先求出这些点的凸包,最远点对一定是凸包上的点,可以用三角形证得,然后旋转这两条平行线,旋转过程中始终夹住这个凸包,旋转一周中平行线间的最远距离就是最远点对的距离。
eg
如图,当平行线旋转到蓝色直线所在位置时,就是平面上所有点之间最远点对的距离。

证明

如果只看做法的话可以跳过证明,看后面的代码模板即可。
大概的意思大家应该都理解了,但是如何实现呢?怎么用平行线来夹住凸多面体呢?如何枚举角度呢?角度从0°-360°是个无穷的值。
对于这几个疑问我们可以来看看旋转的过程,这个角度肯定是没法枚举的,所以我们就要把角度离散化,枚举几个关键点。我们将平行线所夹的两个顶点称为对踵点,最远点对一定是一组对踵点,而对踵点发生变化的临界点就是当平行线和凸多边形的一条边重合的时候。
eg
如图,当平行线和ab边重合时,对踵点就从ac变成了bc,所以我们只需要枚举每条边,找到该边对应的两组对踵点ac和bc,然后一直求这两组对踵点的最大距离,不断更新我们的最大值。当枚举完所有边,最终的结果就是最远点对。
那么还有一个问题,如何找对踵点呢?我们可以发现,当逆时针枚举边时,平行线转到下一条边的同时,对踵点只会有两种变化,要么不动,还是c点;要么也逆时针走(从c点逆时针的下一个或下下一个等),他不会往前走,所以是一个单调的变化,我们就可以用双指针,i指到直线,j指到对踵点,都单调逆时针旋转就ok。我们记c的逆时针的下一个点是d,如果三角形abd面积大于三角形abc的面积,那么j就指到d去,因为这两个三角形是同底的,面积越大说明高越大,即d点到直线ab的距离,用while循环j找到对踵点。
这也我们就可以枚举所有的边,找到所有对踵点距离最大的,就是最远点对,具体步骤可以看代码模板。

代码模板

#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;
#define x first		//方便使用pair
#define y second
const int N = 50010;
typedef pair<int,int> PII;	//用pair来存点

PII p[N];	//p存所有点
int n,top,stk[N];	//n个点,stk是求凸包的栈
bool used[N];		//求凸包的数组,判断点是否在边界上

PII operator-(PII a,PII b)	//重载运算符减号,PII间相减
{
	return {a.x-b.x, a.y-b.y};
}

int operator*(PII a,PII b)	//重载运算符乘,求向量的叉积
{
	return a.x*b.y - a.y*b.x;	//x1*y2 - x2*y1
}

int area(PII a,PII b,PII c)	//求三角形abc的面积
{
	return (b - a) * (c - a);	//向量的叉积
}

int lens(PII a,PII b)	//两点间距离
{
	int dx = a.x - b.x;
	int dy = a.y - b.y;
	return dx*dx + dy*dy;	//因为求最大距离的平方,所以不用开方
}

void andrew()		//andrew算法求凸包,凸包模板
{
	sort(p,p+n);
	for(int i = 0;i < n;i++)
	{	
		while(top >= 2 && area(p[stk[top-2]],p[stk[top-1]],p[i]) <= 0)	//注意这里要先求下凸壳,因为要逆时针存点,方面我们找对踵点
		{
			if(area(p[stk[top-2]],p[stk[top-1]],p[i]) < 0)
				used[stk[top-1]] = 0;
			top--;
		}
		stk[top++] = i;
		used[i] = 1;
	}
	used[0] = 0;
	for(int i = n-1;i >= 0;i--)
	{
		if(used[i])
			continue;
		while(top >= 2 && area(p[stk[top-2]],p[stk[top-1]],p[i]) <= 0)	//然后再求上凸壳
			top--;
		stk[top++] = i;
	}
	top--;	//最后的top--是为了把最后一个入栈的0号点去掉
}

int rotating()	//旋转卡壳
{
	if(top <= 2)	//如果凸包上的点小于等于两个点
		return lens(p[0],p[n-1]);	//返回第一个点和最后一个点的距离,这里的p是排过序的
	int ans = 0;	//存最远距离
	for(int i = 0,j = 2;i < top;i++)	//双指针ij
	{
		PII a = p[stk[i]],b = p[stk[i+1]];	//当前的ab边
		while(area(a,b,p[stk[j]]) < area(a,b,p[stk[j+1]]))	//while循环,找到对踵点j,这里用的是上面说的面积法
			j = (j+1) % top;	//j一直加1,要对top取余
		ans = max(ans,max(lens(a,p[stk[j]]),lens(b,p[stk[j]])));	//更新ans,求对踵点的最大值
	}
	return ans;	//返回答案
}

int main()
{
	cin >> n;	//输入n个点
	for(int i = 0;i < n;i++)
		cin >> p[i].x >> p[i].y;	//输入点坐标
	
	andrew();	//求凸包
	cout << rotating() << endl;	//旋转卡壳

	return 0;
}
  • 3
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值