最小圆覆盖问题 算法步骤与证明+代码模板

计算几何 专栏收录该内容
13 篇文章 1 订阅

最小圆覆盖定义

最小圆覆盖问题是什么呢?就是指在二维平面上有一堆点,然后我们要求一个最小半径的圆能够将所有点全部都包住,这就是最小圆覆盖问题。


最小覆盖圆的性质

性质1:最小覆盖圆是唯一的

证明:我们假设有两个圆O1,O2,他们半径都是r,都是最小覆盖圆,那么所有的点一定在两圆的交集部分。那我们以两圆交集部分的弦长为直径,做一个新圆,该圆依旧包含所有点,而且他的直径是原来圆的弦长,一定是小于原来圆的直径的,因此和原来的圆是最小覆盖圆相矛盾,所以最小覆盖圆是唯一的。
eg

性质2:若圆O1是点集S的最小覆盖圆,则再新加一点p,他在集合S的外部,则新点集的最小覆盖圆一定过点p,即p一定在最小覆盖圆上。

同理我们明显能看到,若新的最小覆盖圆将S点集包住也将p包住,过点p的圆半径一定最小。
我们将这个大圆朝原先的小圆缩小,在缩小的过程中一定会过点p,p就是这个临界状态,因为在不断缩小,所以p一定在既包含S又包含p的最小覆盖圆上。
在这里插入图片描述

性质3:最终的最小覆盖圆一定只有两种情况:1是圆上至少有三个点,由三点限制一个圆(三点共圆);2是圆上只有两个点,则该圆一定是以该两点的连线为直径的。

如果最小覆盖圆上只有一个点的话,我们肯定可以通过平移加缩小找到一个更小的圆包住所有点,与最小不符。
eg


最小圆覆盖算法步骤

随机增量法:就是从所有点里随机选一个加入自己的集合中,然后维护这个集合,然后再随机选一个点加入集合,再维护… 直到所有点都加入这个集合,那么最终的这个集合就是满足我要求的情况了。
然后我们找一个圆就是看能不能找到这个圆上的三个点。

首先我们先将所有点随机化
三层循环第一层从2到n循环i,我们将圆初始化为以第一个点为圆心,半径为0的圆。然后我们要循环判断i点在圆内还是在圆外,若在圆内(在圆上也认为是圆内),那Ci和Ci-1是相同的,我们直接循环i+1就行了;如果i在圆外,那么Ci一定过点i(性质2),然后我们就进第二层循环。
第二层从1到i-1循环j,我们将圆先初始化为以点i为圆心,0为半径的圆,然后不断去加点j,若j在圆内,就继续循环j+1;若j在圆外,就再进第三层循环。
第三层从1到j-1循环k,将圆先初始化为以i和j为直径的圆,然后再循环判断k,若在圆内,就继续循环下一个k+1;若k在圆外,就将圆更新为i、j、k三点确定的圆,直到最后求出来的圆就是最小覆盖圆。


证明

如果只看步骤的话挺简单,可跳过证明,看后面的代码模板即可。

这个证明还是比较绕的,要用到前面的三条性质。我们的目的是为了找到三个点来确定这个圆。首先最外层循环1-n,圆最初是以第一个点为圆心,半径为0的圆。然后我们每次循环到i时,我们已经知道了前i-1个点的最小覆盖圆了,然后我们就判断点i,若i在圆内,那就不用管i了,直接循环下一个点i+1,因为Ci和Ci-1是同一个圆;若i在圆外,那么Ci一定过i点。
现在我们知道了一个信息,1-i的最小覆盖圆过i点,但我们无法确定这个圆(因为我们只知道这个圆上的一个点),那么我们就再来一层循环:从1到i-1循环j,根据我们已知的信息(Ci必过i点),我们现在要求的就是过i点的包含1-j个点的最小覆盖圆。所以我们将圆初始化为以i为圆心,以0为半径的圆,不断地去加j,判断j在圆内还是圆外,圆内就不用管;在圆外的话就说明我们求得的圆一定过点j(性质2依然适用)。
那么现在我们就又知道了一个信息,Ci必过i点和j点,我们就利用这个信息,既然Ci必过i点和j点,那么我们就只看过i和j的圆。所以我们将圆初始化为以i、j为直径的圆(这个圆是包含i、j的最小覆盖圆)。然后我们再来一层循环:从1到j-1循环k,根据我们得到的信息,我们要求过i和j点且包含1-k个点的最小覆盖圆。然后我们循环判断k,若k在圆内,就下一个;若k在圆外,就说明新圆一定过k(性质2),我们就得到了一个过i、j、k三点的圆,因此也就确定了一个唯一的圆。
当k循环到j-1时,就说明我们找到了一个包含1到j-1,并且i和j都在圆边上的最小覆盖圆;然后当j循环到i-1时,就说明我们找到了一个包含1到i-1且i点在圆边是的最小覆盖圆;然后当i循环到n时,就说明我们找到了一个包含1到i-1且i点在圆边上的最小覆盖圆,即包含前n个点的最小覆盖圆。

然后还有一个问题就是已知三点,如何求圆。就是求这三点组成的三角形的外接圆。求出三角形两个边的中垂线,再求出中垂线交点就是圆心,圆心到任意一点的距离就是半径。求中垂线的话得先求出两边的中点,再求出两个边绕端点旋转90°的向量,直到一点和这条直线的向量,就可以写出点向式了。关于向量旋转、求交点函数都在基础知识中有。

然后来看看他的时间复杂度,虽然看着是三重循环,但是复杂度并不 O ( n 3 ) O(n^3) O(n3),因为每次循环下一层前都有一个判断,平时该点是不是在圆上,而三点确定一个圆,所以我们只有 3 n \frac 3 n n3的机会循环下一层,循环j层和k层的复杂度都是 3 n ∗ O ( n ) \frac 3 n * O(n) n3O(n),最终的复杂度就是 O ( n ) ∗ 3 n ∗ O ( n ) ∗ 3 n ∗ O ( n ) O(n)*\frac 3 n * O(n)*\frac 3 n * O(n) O(n)n3O(n)n3O(n),近似于 O ( n ) O(n) O(n),这个复杂度还是可以接受的。因此,每次的随机化的过程是不可省略的,否则有可能会被出题人数据卡到 O ( n 3 ) O(n^3) O(n3)的复杂度去。


代码模板

#include<iostream>
#include<cmath>
#include<algorithm>
using namespace std;
const int N = 100010;
const double eps = 1e-8,PI = acos(-1);	//会用到的常数
#define x first		//方便用pair
#define y second
typedef pair<double,double> PDD;
struct Circle{		//存圆
	PDD o;		//圆心o
	double r;	//半径r
}c;

PDD p[N];	//p来存点
int n;

PDD operator+(PDD a,PDD b)	//重在运算符+,方便pair运算
{
	return {a.x+b.x, a.y+b.y};
}

PDD operator-(PDD a,PDD b)
{
	return {a.x-b.x, a.y-b.y};
}

double operator*(PDD a,PDD b)	//叉乘
{
	return a.x*b.y - a.y*b.x;	//x1*y2 - x2*y1
}

PDD operator*(PDD a,double b)	//数乘
{
	return {a.x*b, a.y*b};
}

PDD operator/(PDD a,double b)
{
	return {a.x/b, a.y/b};
}

int judge(double a,double b)	//两个double数比大小,相等返回0,小于返回-1,大于返回1
{
	if(fabs(a-b) < eps)
		return 0;
	if(a < b)
		return -1;
	return 1;
}

PDD rotate(PDD a,double b)	//向量a旋转b°后的向量,基础知识中有证明
{
	return {a.x*cos(b)+a.y*sin(b), -a.x*sin(b)+a.y*cos(b)};
}

double lens(PDD a,PDD b)	//求两点距离
{
	double dx = a.x - b.x;
	double dy = a.y - b.y;
	return sqrt(dx*dx + dy*dy);	//根号下x方加y方
}

PDD intersection(PDD p,PDD v,PDD q,PDD w)	//求两直线交点,详见基础知识
{
	PDD u = p - q;
	double t = w*u / (v*w);
	return p + v*t;
}

pair<PDD,PDD> bisector(PDD a,PDD b)	//求两点中垂线
{
	PDD p = (a+b) / 2;	//先求出a和b连线的中点,就是横纵坐标和的一半
	PDD v = rotate(b-a,PI/2);	//然后求ab向量旋转90°的向量
	return {p,v};		//就有了直线上一点p和一个向量v,根据点向式可以写出一条直线方程
}

Circle circle(PDD a,PDD b,PDD c)	//已知三点,求外接圆
{
	auto n = bisector(a,b),m = bisector(a,c);	//先求出两个边的中垂线
	PDD o = intersection(n.x,n.y,m.x,m.y);	//然后求两中垂线交点就是圆心o
	double r = lens(o,a);	//求出oa长度就是半径
	return {o,r};		//返回圆心和半径
}

int main()
{
	cin >> n;
	for(int i = 0;i < n;i++)
		cin >> p[i].x >> p[i].y;	//输入个点
	
	random_shuffle(p,p+n);		//随机化p
	c = {p[0],0};			//初始化圆为p[0]
	for(int i = 1;i < n;i++)	//第一次循环
	{
		if(judge(c.r,lens(c.o,p[i])) == -1)	//如果p[i]在圆外
		{
			c = {p[i],0};			//初始化圆为p[i]
			for(int j = 0;j < i;j++)	//第二层循环
			{
				if(judge(c.r,lens(c.o,p[j])) == -1)	//如果p[j]在圆外
				{
					c = {(p[i]+p[j])/2,lens(p[i],p[j])/2};	//初始化圆为p[i]和p[j]为直径的圆
					for(int k = 0;k < j;k++)	//第三层循环
					{
						if(judge(c.r,lens(c.o,p[k])) == -1)	//如果p[k]在圆外
							c = circle(p[i],p[j],p[k]);		//i、j、k三点求一个唯一的圆
					}
				}
			}
		}
	}
	printf("%.10lf\n",c.r);		//输出圆半径
	printf("%.10lf %.10lf\n",c.o.x,c.o.y);	//输出圆心坐标

	return 0;
}

模板题:P1742:最小圆覆盖
代码中几何知识详见基础知识

除了证明比较绕,代码步骤还是比较好写的。

  • 2
    点赞
  • 0
    评论
  • 6
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值