费马小定理与欧拉定理 原理与证明

一、欧拉定理

1、定义

若a与n互质,则 a φ ( n ) ≡ 1 a^{\varphi (n)} \equiv 1 aφ(n)1 (mod n)。
其中 φ ( n ) \varphi (n) φ(n)指欧拉函数:小于n的正整数中与n互质的个数。

2、证明

我们假设n的质因子分别是: p 1 , p 2 , . . . , p φ ( n ) p_1,p_2,...,p_{\varphi(n)} p1,p2,...,pφ(n),记为序列1。
若给每一项都乘a,得序列2: a p 1 , a p 2 , . . . , a p φ ( n ) ap_1,ap_2,...,ap_{\varphi(n)} ap1,ap2,...,apφ(n)

因为 a a a与n互质,且 p i p_i pi与n互质,因此 a p i ap_i api也与n互质。且 a p i ap_i api % n各不相同。这个可以用反证法证得:若假设 a p i ≡ a p j ap_i \equiv ap_j apiapj (mod n),则两边同除以a,得 p i ≡ p j p_i \equiv p_j pipj,又因为 p i p_i pi p j p_j pj是n的质因子,其互不相同,则原假设不成立。

则可得序列2对n取余所得余数就是序列1,小于n的正整数且与n互质的数有且只有 φ ( n ) \varphi (n) φ(n)个,就是这个序列1。

因此将序列2模n后累乘起来和序列1累乘起来的结果是相同的(模n等同于同余n),即可得: a φ ( n ) ⋅ ( a 1 ⋅ a 2 ⋅ . . . ⋅ a φ ( n ) ) ≡ a 1 ⋅ a 2 ⋅ . . . ⋅ a φ ( n ) a^{\varphi(n)} \cdot (a_1\cdot a_2\cdot ... \cdot a_{\varphi(n)}) \equiv a_1\cdot a_2\cdot ... \cdot a_{\varphi(n)} aφ(n)(a1a2...aφ(n))a1a2...aφ(n) (mod n)
两边同时除以 a 1 ⋅ a 2 ⋅ . . . ⋅ a φ ( n ) a_1\cdot a_2\cdot ... \cdot a_{\varphi(n)} a1a2...aφ(n)可得 a φ ( n ) ≡ 1 a^{\varphi(n)} \equiv 1 aφ(n)1 (mod n)。


二、费马小定理

1、定义

若a与n互质,且n为质数,则 a n − 1 ≡ 1 a^{n-1}\equiv1 an11 (mod n)。

2、证明

费马小定理其实就是欧拉定理的一个特殊情况,当n是质数时,小于n的正整数都和n互质,所以他的欧拉函数就等于 a n − 1 a^{n-1} an1,即 a φ ( n ) = a n − 1 a^{\varphi(n)}= a^{n-1} aφ(n)=an1,则根据欧拉定理,费马小定理成立。

  • 1
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值