一、欧拉定理
1、定义
若a与n互质,则 a φ ( n ) ≡ 1 a^{\varphi (n)} \equiv 1 aφ(n)≡1 (mod n)。
其中 φ ( n ) \varphi (n) φ(n)指欧拉函数:小于n的正整数中与n互质的个数。
2、证明
我们假设n的质因子分别是: p 1 , p 2 , . . . , p φ ( n ) p_1,p_2,...,p_{\varphi(n)} p1,p2,...,pφ(n),记为序列1。
若给每一项都乘a,得序列2: a p 1 , a p 2 , . . . , a p φ ( n ) ap_1,ap_2,...,ap_{\varphi(n)} ap1,ap2</

本文详细介绍了欧拉定理及其证明过程,阐述了小于正整数n中与n互质的数的数量(欧拉函数φ(n))与aφ(n)模n同余1的关系。同时,通过欧拉定理推导了费马小定理,即当n为质数时,若a与n互质,则an−1模n同余1。这些定理在数论和加密算法中有着重要应用。
最低0.47元/天 解锁文章
1139

被折叠的 条评论
为什么被折叠?



