计数器(裴蜀定理)

  • 注释:本章同余针对 m m m
  • 题面
  • 题意:见题面。
  • 解决思路:假设对数 a i \small a_i ai取的个数为 k i \small k_i ki,可得到如下等式:
    a 1 k 1 + a 2 k 2 + . . . + a n k n ≡ a   ( 0 ≤ a ≤ m − 1 ) \small a_1k_1+a_2k_2+...+a_nk_n\equiv a~(0 \leq a \leq m-1) a1k1+a2k2+...+ankna (0am1)
    a 1 k 1 + a 2 k 2 + . . . + a n k n + m k m = a   ( 0 ≤ a ≤ m − 1 ) \small a_1k_1+a_2k_2+...+a_nk_n+mk_m= a~(0 \leq a \leq m-1) a1k1+a2k2+...+ankn+mkm=a (0am1)
    发现有解的充要条件是 ( a 1 , a 2 . . . a n , m ) ∣ a \small (a_1,a_2...a_n,m) \mid a (a1,a2...an,m)a,此时 a \small a a 0 \small 0 0时不符合裴蜀定理的要求,所以可以通过同余的关系,将 a \small a a等于 0 \small 0 0变为 a \small a a等于 m \small m m
    ∴ a 1 k 1 + a 2 k 2 + . . . + a n k n + m k m = a   ( 1 ≤ a ≤ m ) \small \therefore a_1k_1+a_2k_2+...+a_nk_n+mk_m= a~(1 \leq a \leq m) a1k1+a2k2+...+ankn+mkm=a (1am)
    计算 [ 1 , m ] \small [1,m] [1,m] ( a 1 , a 2 . . . a n , m ) \small (a_1,a_2...a_n,m) (a1,a2...an,m)的倍数即是答案。
  • AC代码
//优化
#pragma GCC optimize(2)
//C
#include<string.h>
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
//C++
//#include<unordered_map>
#include<algorithm>
#include<iostream>
#include<istream>
#include<iomanip>
#include<climits>
#include<cstdio>
#include<string>
#include<vector>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<set>
//宏定义
#define N 2010
#define DoIdo main
//#define scanf scanf_s
#define it set<ll>::iterator
//定义+命名空间
typedef long long ll;
typedef unsigned long long ull;
const ll mod = 998244353;
const ll INF = 1e18;
const int maxn = 5e6 + 10;
using namespace std;
//全局变量
//函数区
ll max(ll a, ll b) { return a > b ? a : b; }
ll min(ll a, ll b) { return a < b ? a : b; }
ll gcd(ll a, ll b) { return !b ? a : gcd(b, a % b); }
//主函数
int DoIdo() {

	ios::sync_with_stdio(false);
	cin.tie(NULL), cout.tie(NULL);

	ll n, m;
	cin >> n >> m;

	ll g = m;
	for (int i = 1; i <= n; i++) {
		ll val; cin >> val;
		g = gcd(g, val);
	}

	cout << m / g << endl;
	return 0;
}
//分割线---------------------------------QWQ
/*



*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值