卷积神经网络层结构概述

一、卷积神经网络基本的层结构

(一)卷积层

1.可参考此文章:https://blog.csdn.net/tjlakewalker/article/details/83275322
2.实现代码:

import torch.nn as nn
conv = nn.Conv2d(in_channels=3,   #输入通道
                 out_channels=64, #输出通道
                 kernel_size=3,   #卷积核
                 stride=1)        #步长
print(conv)
# 结果:Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1))

3.输出矩阵的大小计算公式

W:输入矩阵边长  F:过滤器边长  P:填充数  S:步长
输出的正方形矩阵边长:(W-F+2P)/S+1

(二)反卷积层

简单地说就是卷积的反向操作
pytorch中有两种反卷积方法
1.双线性插值上采样:

import torch.nn as nn
bilinear_layer = nn.UpsamplingBilinear2d(size = None,             #期望的输出尺寸
                                         scale_factor = None)     #缩放因子:决定缩放的大小                                         

2.转置卷积

import torch.nn as nn
transpose_conv = nn.ConvTranspose2d(in_channels = None,    #输入通道
                                    out_channels = None,   #输出通道
                                    kernel_size = None,    #卷积核
                                    stride = None,         #步长
                                    padding = None)       #填充数                              

转置卷积是通过学习的方式,即在训练中更新卷积核的参数,完成上采样,其计算结果更具鲁棒性,缺点是会增加模型的训练时间和训练参数;其代码比卷积层代码仅多了一个填充参数,其余参数不变

(三)池化层

1.最大池化

import torch.nn as nn
maxpool_layer = nn.MaxPool2d(kernel_size = None,    #卷积核
                             stride = None,         #步长
                             padding = None,        #填充数
                             dilation = None,       #膨胀数
                             return_indices = None, #是否返回元素的位置信息
                             ceil_mode=None)        #是否向上取整

2.平均池化

import torch.nn as nn
average_layer = nn.AvgPool2d(kernel_size = None,        #卷积核
                             stride = None,             #步长
                             padding = None,            #填充数
                             ceil_mode=None)            #是否向上取整

3.Mixed pooling
4.Stochastic Pooling

特点:
1.池化层是对输入的特征图进行压缩
2.池化层可以使特征图变小简化计算
3.池化不断抽取局部区域的特征,但不关心区域的位置,目标位置在较小的移动之后扔保持相同的结果,在一定程度上可以增加了平移不变性

(四)正则化层

全称Batch Normalization(BN),就是归一化处理
好处:减轻对初始数据的依赖;加速训练,学习率可以设置更高
坏处:一来batch的大小,batch不同,方差和均值的计算不稳定。------>BN层不适合batch较小的场景,也不适合RNN(RNN是动态网络结构,batch有长有短),只适合batch较大的场景

import torch.nn as nn
conv = nn.Conv2d(in_channels=3,   #输入通道
                 out_channels=64, #输出通道
                 kernel_size=3,   #卷积核
                 stride=1)        #步长
BN = nn.BatchNorm2d(64)           #BN层参数紧跟卷积层的输出参数

(五)全连接层

import torch.nn as nn
linear = nn.Linear(in_features=None,   #输入通道数
                   out_features=None)  #输出通道数:一般是输出类别数

当特征图纬度过大时,可以通过几个全连接层完成降纬,最后一个全连接层的输出通道为最终的分类类别:

import torch.nn as nn
linear_1 = nn.Linear(2048,512)  #通过两个全连接层由2048降至5
linear_2 = nn.Linear(512,5)  

二、搭建一个简单的完整的神经网络结构

(一)一般步骤

(1)class类的命名:要继承nn.Module
(2)init部分:完成层的构建(可以按照不同的方法来完成各个层结构的构建)
1.层层堆叠法:利用torch.nn逐一构建层结构
2.Sequential时序容器法:但是输出层结构时无名字,只有0、1、2等代号
3.Sequential+add_module法:可以给容器中各层赋予对应的名字
4.Sequential+OrderedDict法:时序容器+有序字典的方式,对层结构和各自对应的名字,同一完成构建
(3)forward部分:完成输入在神经网络中的前向传播过程

(二)构建方法示例

(1)层层堆叠法

#通过层层堆叠方式构建网络
import torch.nn as nn
class Net1(nn.Module):
    def __init__(self):
        super(Net1, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, 3, 1, 1)     #定义卷积层conv1
        self.relu = nn.ReLU()                      #定义激活函数
        self.pool = nn.MaxPool2d(2)                #定义池化层
        self.dense1 = nn.Linear(32 * 3 * 3, 128)   #构建两个全连接层dense1,dense2
        self.dense2 = nn.Linear(128, 10)
    def forward(self,x):                           #前向传播过程
        x = self.conv1(x)
        x = self.relu(x)
        x = self.pool(x)
        x = x.view(x.size(0), -1)                  #拉伸为1维
        x = self.dense1(x)
        x = self.relu(x)
        x = self.dense2(x)
        return x
net = Net1()
print(net)
# 结果
# Net1(
#   (conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
#   (relu): ReLU()
#   (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
#   (dense1): Linear(in_features=288, out_features=128, bias=True)
#   (dense2): Linear(in_features=128, out_features=10, bias=True)
# )

层层堆叠的方式构建,输出网络层结构时显示的层结构顺序是命名的先后顺序,不代表实际前向传播的层结构顺序

(2)Sequential时序容器法

#通过sequential时序容器构建网络
import torch.nn as nn
class Net2(nn.Module):
    def __init__(self):
        super(Net2, self).__init__()
        self.conv = nn.Sequential(       #在第一个时序容器conv中依次构建卷积、激活、池化层
            nn.Conv2d(3, 32, 3, 1, 1),
            nn.ReLU(),
            nn.MaxPool2d(2)
        )
        self.dense = nn.Sequential(      #在第二个时序容器dense中依次构建全连接、激活、全连接层
            nn.Linear(32 * 3 * 3, 128),
            nn.ReLU(),
            nn.Linear(128, 10)
        )
    def forward(self,x):                 #前向传播
        conv_out = self.conv(x)
        res = conv_out.view(conv_out.size(0), -1)
        out = self.dense(res)
        return out
net = Net2()
print(net)
# 结果
# Net2(
#   (conv): Sequential(
#     (0): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
#     (1): ReLU()
#     (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
#   )
#   (dense): Sequential(
#     (0): Linear(in_features=288, out_features=128, bias=True)
#     (1): ReLU()
#     (2): Linear(in_features=128, out_features=10, bias=True)
#   )
# )

利用Sequential构建,基本上代表了前向传播的顺序(纬度操作是不会显示在输出的网络结构中,如代码中的拉伸view操作);输出层结构时无名字,只有0、1、2等代号

(3)Sequential+add_module法

#通过Sequential+add_module构建网络
import torch.nn as nn
class Net3(nn.Module):
    def __init__(self):
        super(Net3, self).__init__()
        self.conv = nn.Sequential()     #先构建空的Sequential容器,再往里添加
        self.conv.add_module("conv1", nn.Conv2d(3, 32, 3, 1, 1))
        self.conv.add_module("relu1", nn.ReLU())
        self.conv.add_module("pool1", nn.MaxPool2d(2))


        self.dense = nn.Sequential()
        self.dense.add_module("dense1", nn.Linear(32 * 3 * 3, 128))
        self.dense.add_module("relu2", nn.ReLU())
        self.dense.add_module("dense2", nn.Linear(128, 10))
    def forward(self,x):
        conv_out = self.conv(x)
        res = conv_out.view(conv_out.size(0), -1)
        out = self.dense(res)
        return out
net = Net3()
print(net)
# 结果
# Net3(
#   (conv): Sequential(
#     (conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
#     (relu1): ReLU()
#     (pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
#   )
#   (dense): Sequential(
#     (dense1): Linear(in_features=288, out_features=128, bias=True)
#     (relu2): ReLU()
#     (dense2): Linear(in_features=128, out_features=10, bias=True)
#   )
# )

可以给容器中各层赋予对应的名字,但网络深的话代码繁琐

(4)Sequential+OrderedDict法

#通过Sequential+OrderedDict法构建网络
import torch.nn as nn
from collections import OrderedDict
class Net4(nn.Module):
    def __init__(self):
        super(Net4, self).__init__()
        self.conv = nn.Sequential(
            OrderedDict(
                [
                    ('conv1', nn.Conv2d(3, 32, 3, 1, 1)),
                    ('relu1', nn.ReLU()),
                    ('pool1', nn.MaxPool2d(2))
                ]
            )
        )

        self.dense = nn.Sequential(
            OrderedDict(
                [
                    ('dense1', nn.Linear(32 * 3 * 3, 128)),
                    ('relu2', nn.ReLU()),
                    ('dense2', nn.Linear(128, 10))
                ]
            )
        )
    def forward(self,x):
        conv_out = self.conv(x)
        res = conv_out.view(conv_out.size(0), -1)
        out = self.dense(res)
        return out
net = Net4()
print(net)
# 结果
# Net4(
#   (conv): Sequential(
#     (conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
#     (relu1): ReLU()
#     (pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
#   )
#   (dense): Sequential(
#     (dense1): Linear(in_features=288, out_features=128, bias=True)
#     (relu2): ReLU()
#     (dense2): Linear(in_features=128, out_features=10, bias=True)
#   )
# )

序容器+有序字典的方式,对层结构和各自对应的名字,同一完成构建;也比方法3代码简单一些

三、代码函数中的参数含义参考Pytorch中文社区查找

https://pytorch-cn.readthedocs.io/zh/latest/

  • 4
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值