【题目描述】
某国为了防御敌国的导弹袭击,开发出一种导弹拦截系统,但是这种拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭,由于该系统还在试用阶段。所以一套系统有可能不能拦截所有的导弹。
输入导弹依次飞来的高度(雷达给出的高度不大于30000的正整数)。计算要拦截所有导弹最小需要配备多少套这种导弹拦截系统。
【输入】
n颗依次飞来的高度(1≤n≤1000)。
【输出】
要拦截所有导弹最小配备的系统数k。
【输入样例】
389 207 155 300 299 170 158 65
【输出样例】
2
该题的贪心思想:当有多个拦截系统能拦截某导弹时,要想配备最少的系统数,应在所有能拦截的系统中找拦截高度最低的那一个系统来拦截此导弹,才能充分应用该系统,使所需的系统数达到最小,以此体现贪心
注意点:
1.第一个导弹的高度就是第一个系统当前的最低高度
2.某个系统能拦截某导弹的条件:该系统的最低拦截高度>=该导弹的高度
3.某个系统拦截成功后,该系统的最低拦截高度要更新为上一次拦截的导弹的高度
#include<iostream>
#include<cstring>
using namespace std;
int main()
{
int a[101];//存储导弹飞来的高度
int b[101];//存储本系统当前所能拦截的最低高度,数组下标表示本系统的序号
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
int n=1;
while(cin>>a[n])//先回车再Ctrl+Z再回车可结束输入
{
n++;
}
int p=0;//p用来记录能够拦截某导弹的系统的序号
//若没有系统能拦截,则p=0
int k=1;//拦截系统的数量或拦截系统的序号,初始化为1
b[k]=a[1];//第一个导弹的高度给第一个系统的最低拦截高度
for(int i=2;i<=n;i++)
{
p=0;
for(int j=1;j<=k;j++)//遍历所有当前的系统,寻找能拦截该导弹的系统
{
if(b[j]>=a[i])//找到了
{
if(p==0)
p=j;//标记该系统的序号
else if(b[p]>b[j])
p=j;//贪心算法的体现,在所有能拦截的系统中找拦截高度最低的系统来拦截该导弹
}
}
if(p==0)//没找到
{
k++;//建立一个新的拦截系统
b[k]=a[i];
}
else//在找到的基础上更新那个系统的最低高度
b[p]=a[i];
}
cout<<k<<endl;
return 0;
}