Python简单处理excel数据(拆分合并单元格、根据表头合并sheet、添加列数、添加内容操作)

这篇博客介绍了如何使用Python的openpyxl和pandas库对含有气象信息的Excel文件进行预处理。首先,通过插入列并填充sheet名来标识数据来源,然后拆分合并单元格并保留原值。最后,将多个sheet合并成一个统一的sheet。提供的代码示例详细展示了实现这些操作的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介:大量数据存于excel表中。利用python语言对按要求对存有数据的excel进行预处理,使其成为便于利用的整洁数据
关键词Python Excel openpyxl Pandas

问题描述:气温数据表
一个存有不同地区气象信息的excel文件,有多个sheet,存放的数据类型一致,在部分sheet中存在合并的单元格。
要求:

  1. 按照对应数据属性类型将sheet合并
  2. 合并后为一个sheet,新增加一列,第一列单元格分别填入数据对应的sheet名
  3. 拆分表中所有的合并单元格,并在拆分后的单元格填入原单元格的内容

代码详解:
在这里插入图片描述
将测试excel文件与待处理的excel文件置于同一文件夹下,便于填写文件路径,减少代码量可新建一个空白文件,放置处理后的数据(也可放置于原文件)

main.py
功能:
1.完成对每个sheet的插入一列内容并填入sheet名
2.拆分所有sheet中单元格并填入原值

import openpyxl
import pandas as pd

wb = openpyxl.load_workbook('weatherdata.xlsx')

for worksheet in wb._sheets:
   worksheet.insert_cols(idx=1)
   worksheet.cell(1, 1).value ="省份"
   for i in range(2,worksheet.max_row+1):
       worksheet.cell(i, 1).value=worksheet.title


for worksheet in wb._sheets:
    m_list = worksheet.merged_cells
    cr = []
    for m_area in m_list:
        r1, r2, c1, c2 = m_area.min_row, m_area.max_row, m_area.min_col, m_area.max_col
        if r2 - r1 > 0:
            cr.append((r1, r2, c1, c2))
            print('符合条件%s' % str(m_area))
    for r in cr:
        worksheet.unmerge_cells(start_row=r[0], end_row=r[1],start_column=r[2], end_column=r[3])
        for i in range(r[1] - r[0] + 1):
            for j in range(r[3] - r[2] + 1):
                worksheet.cell(row=r[0] + i, column=r[2] + j).value=worksheet.cell(r[0], r[2]).value


wb.save('weatherdata.xlsx')

拆分单元格部分借鉴学习此博主代码内容
https://blog.csdn.net/weixin_44788825/article/details/104526131

step2.py
将多个sheet按表头进行合并为一个sheet表,并将内容存入output.xlsx 文件中

import openpyxl
import pandas as pd

iris = pd.read_excel('weatherdata.xlsx',None)#读入数据文件
keys = list(iris.keys())
iris_concat = pd.DataFrame()
for i in keys:
    iris1 = iris[i]
    iris_concat = pd.concat([iris_concat,iris1])
iris_concat.to_excel('output.xlsx')

wbc = openpyxl.load_workbook('output.xlsx')
sheet1 = wbc.active
sheet1.delete_cols(1)
wbc.save('output.xlsx')

注:openoyxl和pandas包导入可能会出现问题,用pip下载后可能在pycharm依旧提示未安装,可直接根据提示在pycharm中进行安装使用

### 使用 Python Pandas 或 Openpyxl 读取带有合并单元表头Excel 数据 #### 方法一:使用 `Pandas` 处理合并单元数据填充 当遇到包含合并单元的情况时,可以利用 `pandas` 的前向填充功能来处理缺失值。通过这种方式,能够确保所有的空白单元被其上方的有效值所替代。 ```python import pandas as pd df = pd.read_excel('example_with_merged_cells.xlsx', engine='openpyxl') # 对特定列应用向前填充方法,这里假设'行业'列为需要处理的对象 df['行业'] = df['行业'].ffill() print(df) ``` 此代码片段展示了如何加载一个 Excel 文件针对其中某一列执行前向填充操作[^2]。 #### 方法二:使用 `Openpyxl` 获取原始数据结构 如果希望保留原有的合并单元信息而不做任何修改,则可以直接借助于 `openpyxl` 库来进行更底层的操作: ```python from openpyxl import load_workbook wb = load_workbook(filename='example_with_merged_cells.xlsx') ws = wb.active for merged_cell_range in ws.merged_cells.ranges: min_col, min_row, max_col, max_row = range_boundaries(str(merged_cell_range)) top_left_value = ws.cell(row=min_row, column=min_col).value for row in range(min_row, max_row + 1): for col in range(min_col, max_col + 1): current_cell = ws.cell(row=row, column=col) if not (row == min_row and col == min_col): # 不覆盖原顶部左角单元 current_cell.value = top_left_value data = ws.values columns = next(data)[0:] df = pd.DataFrame(data, columns=columns) print(df) ``` 上述脚本首先遍历所有已知的合并区域,将这些区域内每个单元设置为其所在组中的第一个非空值;之后再转换为 DataFrame 形式以便进一步分析[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值