这环境折腾了四五天,终于让我玩转了。
首先默认你安装好了conda,cuda(先装visual studio),cuDNN一套,然后开始配置。
我成功跑通的环境:
- python=3.6
- tensorflow=1.9.0
- keras=2.1.6
首先创建虚拟环境
conda create -n maskrcnn python=3.6
然后安装tensorflow=1.9.0和keras=2.1.6
但是这里注意一点,你是想用GPU训练还是想用CPU训练要看tensorflow的版本具体见下图。
所以呢,
conda search tensorflow=1.9.0 #默认安装的大概率是CPU版本
conda search tensorflow=1.9.0=gpu_py36hfdee9c2_1 # 手动指定安装GPU版本
这里如果用conda install tensorflow=1.90
的话,大概率会给你安装CPU版本,我用台式机 i5 14600kf,训练了一天一夜,跑完了30个ecpoch,而我笔记本上用1650,虽然显存只有4G,但是只要1个多小时就可以跑完训练。
安装完tensorflow,再装keras(这个绝对不能装过高的版本)
conda install keras=2.1.6
装完上面的两个,下面直接用pip安装我导出的requirements,相当于整个复制了我电脑上已经能跑通的环境了。
首先,你在本地根目录下创建requirements.txt,并写入以下内容:
absl-py
alabaster==0.7.13
argon2-cffi==21.3.0
argon2-cffi-bindings==21.2.0
astor==0.8.1
async-generator==1.10
attrs==22.2.0
Babel==2.11.0
backcall==0.2.0
bleach==4.1.0
cached-property==1.5.2
certifi==2021.5.30
cffi==1.15.1
charset-normalizer==2.0.12
colorama==0.4.5
comm</